On new completely regular q-ary codes¹

J. Rifà, 2 V.A. Zinoviev 3

July 17, 2005

¹This work was partially supported by CICYT Grants TIC2003-08604-C04-01, TIC2003-02041, by Catalan DURSI Grants 2001SGR 00219 and 2004PIV1-3, and also was partly supported by Russian fund of fundamental researches (the number of project 03 - 01 - 00098)

²Department of Information and Communications Engineering, Autonomous University of Barcelona, 08193-Bellaterra, Spain. (email: josep.rifa@autonoma.edu)

³Institute for Problems of Information Transmission of the Russian Academy of Sciences, Bol'shoi Karetnyi per. 19, GSP-4, Moscow, 101447, Russia. (email: zinov@iitp.ru)

Abstract

In this paper from q-ary perfect codes new completely regular q-ary codes are constructed. In particular, two new ternary completely regular codes are obtained from ternary Golay [11,6,5] code. The first [11,5,6] code with covering radius $\rho=4$ coincides with the dual Golay code and its intersection array is (22,20,18,2,1;1,2,9,20,22). The second [10,5,5] code, with covering radius $\rho=4$, coincides with the dual code of the punctured dual Golay code and has the intersection array given by (20,18,4,1;1,2,18,20).

New q-ary completely regular codes are obtained from q-ary perfect codes with d=3. It is shown that under certain conditions a q-ary perfect (n,N,3) code gives a new q-ary completely regular code with d=4, covering radius $\rho=3$ and intersection array (n(q-1),(n-1)(q-1),1;1,(n-1),n(q-1)). For the case $q=2^m$, $(m\geq 2)$ this gives, in particular, an infinite family of new q-ary completely regular [q+1,q-2,4] codes with covering radius $\rho=3$ and with intersection array $(q^2-1,q(q-1),1;1,q,q^2-1)$. Any q-ary perfect (n,N,3) code gives a new completely regular (n-1,N/q,3) code with covering radius $\rho=2$ and intersection array ((n-1)(q-1),(q-1);1,(n-1(q-1))).

Keywords: Completely regular codes, Golay codes, Hamming codes, perfect codes, q-ary codes, t-designs.

MR Subject Classification: 94B25, 05B05

1 Introduction

Let F be arbitrary finite alphabet of size q with elements, denoted by $\{0, 1, ..., q-1\}$, assuming that F is at least an abelian group with an addition operation denoted by "+" (and inverse operation "-") and with zero element denoted by 0. Let $\operatorname{wt}(\mathbf{v})$ denote the $\operatorname{Hamming}$ weight of a vector $\mathbf{v} \in F^n$ (i.e. the number of its nonzero positions), and $d(\mathbf{v}, \mathbf{u}) = \operatorname{wt}(\mathbf{v} - \mathbf{u})$ denote the $\operatorname{Hamming}$ distance between two vectors \mathbf{v} and \mathbf{u} . By the same way (i.e. "+"/"-") we denote the component-wise addition/substruction of vectors of F^n). A q-ary $(n, N, d)_q$ -code C is a subset of F^n where n is the length, d is the minimum distance, and N = |C| is the cardinality of C. For the case when F is a finite field \mathbb{F}_q and C is a k-dimensional linear subspace of \mathbb{F}_q^n , C is a linear code, denoted $[n, k, d]_q$, where $N = q^k$.

Given any vector $\mathbf{v} \in F^n$, its distance to the code C is

$$d(\mathbf{v}, C) = \min_{\mathbf{x} \in C} \{d(\mathbf{v}, \mathbf{x})\},\$$

and the covering radius of the code C is

$$\rho = \max_{\mathbf{v} \in F^n} .\{d(\mathbf{v}, C)\}\$$

For a given q-ary code C with covering radius $\rho = \rho(C)$ define

$$C(i) = \{ \mathbf{x} \in F^n : d(\mathbf{x}, C) = i \}, i = 1, 2, ..., \rho.$$

We assume that a q-ary code C always contains the zero vector, if it is not stated the opposite. Let $D = C + \mathbf{x}$ be a *shift* of C. The *weight* $\operatorname{wt}(D)$ of D is the minimum weight of the codewords of D. For an arbitrary shift D of weight $i = \operatorname{wt}(D)$ denote by $\mu(D) = (\mu_0(D), \mu_1(D), ..., \mu_n(D))$ its

weight distribution, where $\mu_i(D)$ denotes the number of words of D of weight i. Denote by C_j (respectively, D_j , and $C(i)_j$) the subset of C (respectively, of D and C(i)), formed by all words of the weight j. In our terminology $\mu_i(D) = |D_i|$.

Definition 1 A q-ary code C with covering radius ρ is called completely regular if the weight distribution of any shift D of weight i, $i = 0, 1, ..., \rho$ of C is uniquely defined by the minimum weight of D, i.e. by the number i = wt(D).

Let C be a q-ary e-error-correcting code, i.e. a code with $d \geq 2e + 1$. It has been conjectured for a long time that if C is a completely regular code and |C| > 2, then $e \leq 3$. Moreover, in [10] it is conjectured that the only completely regular code C with |C| > 2 and $d \geq 8$ is the well known extended binary Golay $(24, 2^{12}, 8)$ code with $\rho = 4$. As we know from the results [14, 17] for the case $\rho = e$ and [13, 15, 8]) for the case $\rho = e + 1$, any such nontrivial unknown code should have a covering radius $\rho \geq e + 2$.

This paper is a natural continuation of our previous papers [4] and [5], where we derived many new completely regular and completely transitive binary codes, and described all non-antipodal binary such codes. Moreover in [4], we have disproved the conjecture of Neumaier above (see [10]), finding new completely regular binary [23, 11, 8]-code with covering radius $\rho = 7$ and with intersection array (23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23).

Our purpose in this paper is to prove the existence of new q-ary completely regular codes. In particular, we proved that the ternary [11, 5, 6]-code, which is a third part of the perfect ternary Golay [11, 6, 5]-code is a completely

regular code with minimal distance 6, with covering radius $\rho = 5$ and with intersection array (22, 20, 18, 2, 1; 1, 2, 9, 20, 22). Puncturing of this code also gives a new completely regular code with minimal distance 5, with covering radius $\rho = 4$ and with intersection array (20, 18, 4, 1; 1, 2, 18, 20). In fact, in Section 3, we prove that the shortened Golay code is completely regular, but this shortened code is equivalent to that punctured.

A q-th part of a q-ary perfect $(n=(q^m-1)/(q-1), N=q^{n-m}, 3)$ -code with Hamming parameters gives under certain conditions a new completely regular code with d=4 and $\rho=3$ and intersection array ((q-1)n, (q-1)(n-1), 1; 1, n-1, (q-1)n). Furthermore, any q-ary perfect (n, N, 3)-code gives a new q-ary completely regular (n-1, N/q, 3) code with $\rho=2$ and intersection array ((q-1)(n-1), q-1; 1, (q-1)(n-1)).

All these new codes are uniformly packed in the wide sense, i.e. in the sense of [1, 2].

The paper is organized as follows. In Section 2 we give some preliminary results concerning q-ary completely regular codes. In Section 3 we give new q-ary completely regular codes, obtained from ternary perfect Golay code. Section 4 is dedicated to new q-ary completely regular codes, obtained from q-ary 1-perfect codes.

2 Preliminary results

We give some definitions, notations and results which we will need. Given two sets $X, Y \subset F^n$, define their minimum distance d(X, Y):

$$d(X,Y) = \min\{d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in X, \mathbf{y} \in Y\}.$$

We write $X + \mathbf{x}$ instead of $X + \{\mathbf{x}\}$. For a given vector $\mathbf{x} \in F^n$ let $\bar{\mathbf{x}}$ denote any of q vectors at distance n from \mathbf{x} , i.e. $d(\mathbf{x}, \bar{\mathbf{x}}) = n$.

Definition 2 Let C be a q-ary code of length n and let ρ be its covering radius. We say that C is uniformly packed in the wide sense, i.e. in the sense of [1], if there exist rational numbers $\alpha_0, \ldots, \alpha_{\rho}$ such that for any $\mathbf{v} \in F^n$

$$\sum_{k=0}^{\rho} \alpha_k f_k(\mathbf{v}) = 1 , \qquad (1)$$

where $f_k(\mathbf{v})$ is the number of codewords at distance k from \mathbf{v} .

We use also the definition of completely regularity given in [10].

Definition 3 A code C is completely regular if, for all $l \geq 0$, every vector $x \in C(l)$ has the same number c_l of neighbors in C(l-1) and the same number b_l of neighbors in C(l+1). Also, define $a_l = (q-1)n - b_l - c_l$ and note that $c_0 = b_\rho = 0$. Define by $\{b_0, \ldots, b_{\rho-1}; c_1, \ldots, c_\rho\}$ the intersection array of C and by L the intersection matrix of C:

$$L = \begin{pmatrix} a_0 & b_0 & 0 & 0 & \cdots & 0 \\ c_1 & a_1 & b_1 & \cdots & 0 & 0 \\ 0 & c_2 & \ddots & \ddots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \vdots & \ddots & \ddots & b_{\rho-1} \\ 0 & 0 & \cdots & \cdots & c_{\rho} & a_{\rho} \end{pmatrix}.$$

The support of $\mathbf{v} \in F^n$, $\mathbf{v} = (v_1, \dots, v_n)$ is $supp(\mathbf{v}) = \{ \ell \mid v_\ell \neq 0 \}$. Say that a vector \mathbf{v} covers a vector \mathbf{z} if the condition $z_i \neq 0$) implies $z_i = v_i$.

Following [16], we use the following q-ary t-designs.

Definition 4 A set T of vectors $\mathbf{v} \in F^n$ of weight w is a q-ary t-design, denoted $T(n, w, t, \lambda)_q$, if for any vector $\mathbf{z} \in F^n$ of weight t, $1 \leq t \leq w$, there are precisely λ vectors \mathbf{v}_i , $i = 1, ..., \lambda$, from $T(n, w, t, \lambda)_q$, each of them covering \mathbf{z} . If $\lambda = 1$ we call this t-design by a q-ary Steiner system and denote by $S(n, w, t)_q$.

Definition 5 Let F be an abelian group under addition. We say that a vector $\mathbf{x} = (x_1, ..., x_n) \in F^n$ has parity $s, s \in F$, if

$$\sum_{i=1}^{n} x_i = s.$$

Definition 6 We say that a q-ary code C with minimum distance d and with zero codeword has t-design property, if any nonempty set C_j , $d \leq j \leq n$, is a q-ary t-design.

The following well known fact directly follows from the definition of completely regular code.

Lemma 1 Let C be a completely regular code with minimum distance d and with zero codeword. Then C has t-design property, where t = e, if d = 2e + 1 and t = e + 1, if d = 2e + 2.

For perfect codes with d=2e+1 this statement can be formulated as follows.

Lemma 2 Let C be a q-ary perfect code with minimum distance d = 2e + 1 and with zero codeword. Then C has t-design property, where t = e + 1. Furthermore, the set C_d is a q-ary Steiner system $S(n, d, e + 1)_q$.

Proof. For C_d the result is straightforward. Indeed, by definition of perfect code any vector $\mathbf{x} \in F^n$ of weight e+1 should be covered by exactly one codeword of weight d, which implies that C_d is a Steiner system $S(n, d, e+1)_q$. For larger weights it can be done using the same arguments as in [13] for the binary case. \triangle

The next statement can be found in [10] for binary codes. For the case q > 2 it can be proved easily.

Lemma 3 If C is completely regular with covering radius ρ , then $C(\rho)$ is also completely regular, with reversed intersection array and distribution diagram.

Next three Lemmas will be needed in the following Section.

Lemma 4 Let C be a q-ary linear code and denote by $C^{(s)}$ the shortened code of C formed by taking the codewords of C which have a fixed coordinate equal to zero and then by deleting this fixed coordinate. Let C^{\perp} be the dual code of C and $C^{(p)}$ the punctured code of C, i.e. obtained from C by deleting the fixed coordinate. Then

$$C^{(s)\perp} = C^{\perp(p)}$$

Proof. It is straightforward. \triangle

Lemma 5 Let C be the Golay code (binary or ternary). Then, $C^{(0)}$, the subcode of C formed by all codewords with parity zero coincides with the dual code of C.

Proof. The Golay code (binary or ternary) is a cyclic, quadratic-residue code C of length, respectively, n = 23 and n = 11. We know (see [9]) that

 $x^n - 1 = (x - 1) \cdot g(x) \cdot h(x)$, where g(x) is the generator polynomial of C and h(x) is the reciprocal polynomial of g(x).

Let $C^{(0)}$ be the subcode of C formed by all codewords with parity zero. Code $C^{(0)}$ is a cyclic code with generator matrix $(x-1) \cdot g(x)$ and the dual code $C^{(0)\perp}$ is a cyclic code with generator polynomial given by the reciprocal polynomial of h(x) which coincides with g(x), so $C^{(0)} = C^{\perp}$. \triangle

Lemma 6 Let C be the Golay code (binary or ternary). Then, the two codes $C^{(0)(p)} = C^{(s)\perp}$ and $C^{(s)}$ are equivalent, but $C^{(s)}$ is not a self-dual code.

Proof. We begin with the ternary case, so let C be the ternary Golay code. Note that $C^{(s)}$ comes from the extended Golay code $C^{(e)} = [12, 3^6, 6]$ taking the codewords with (0,0), (1,0) or (2,0) as the first two coordinates and deleting these two coordinates. Moreover note that $C^{(0)(p)}$ also comes from the extended Golay code $C^{(e)}$ taking the codewords with (0,0), (0,1) or (0,2) as the first two coordinates and deleting these two coordinates.

It is very well-known that code $C^{(e)}$ is unique (see [9]), so the two constructions above are equivalent. Moreover, looking at the two generator matrices of codes $C^{(s)\perp}$ and $C^{(s)}$ it is easy to see that $C^{(s)}$ is not a self-dual code.

Concerning the binary Golay case the proof is the same and we do not repeat it.

3 New q-ary completely regular codes from ternary Golay code

As we mentioned already the even, or odd half subcodes of a binary perfect code, and codes, obtained by puncturing of these subcodes give new completely regular codes. For q-ary perfect codes it is not the case, since we can not guarantee the existence of subcodes with minimum distance d=4 for perfect codes with Hamming parameters.

We start from the ternary Golay code. Before we consider some q-ary designs, arising from the ternary Golay code.

Lemma 7 Let G be the ternary perfect Golay $[11, 6, 5]_3$ -code. Denote by $G^{(0)}$ the subcode of G with minimum distance 6, formed by all codewords with zero overall parity checking modulo 3. Then:

- (i) Code $G^{(0)}$ is formed by the zero vector and all the codewords of G with weights 6 and 9.
- (ii) The set G_5 is a ternary Steiner system $S(11,5,3)_3$ and the sets $G_6^{(0)}$ and $G_9^{(0)}$ are ternary 3-designs $T(11,6,3,2)_3$ and $T(11,9,3,3)_3$ respectively.
- *Proof.* (i) It can be checked directly from construction of the ternary Golay code.
- (ii) By Lemma 2 the set G_5 is a ternary Steiner system S(11, 5, 3). Now by the same lemma the sets G_6 and G_9 are ternary 3-design. Taking into account, that all codewords from G_6 have the zero parity, we conclude that $G_6^{(0)} = G_6$. Since $|G_6^{(0)}| = 132$, taking into account that it is a ternary 3design, we obtain that $G_6^{(0)}$ is $T(11, 6, 3, 2)_3$. Similarly, since $G_9^{(0)} = G_9$ (all

codewords from G_9 have the zero parity) and since $|G_9^{(0)}| = 110$, we deduce that $G_9^{(0)}$ is $T(11, 9, 3, 3)_3$. \triangle

Theorem 1 Let G be the ternary perfect Golay $[11, 6, 5]_3$ -code. Denote by $G^{(0)}$ the subcode of G with minimum distance 6, formed by all codewords with zero overall parity checking modulo 3. Then:

- (i) $G^{(0)}$ is the [11, 5, 6] code, dual to G.
- (ii) $G^{(0)}$ is the completely regular code with covering radius 5 and with intersection array $\{22, 20, 18, 2, 1; 1, 2, 9, 20, 22\}$.
- (iii) $G^{(0)}$ is uniformly packed in the sense of [1] with parameters α_i :

$$\alpha_0 = 1, \ \alpha_1 = \frac{5}{11}, \ \alpha_2 = \frac{29}{110}, \ \alpha_3 = \frac{41}{330}, \ \alpha_4 = \frac{17}{330}, \ \alpha_5 = \frac{1}{66}.$$

- *Proof.* (i) By Lemma 5 the code $G^{(0)}$ coincides with the dual of G. From the other side, the extension of G is a self-dual code (Theorem 16.19 in [9]). Hence $G^{(0)}$ is [11, 5, 6] formed by all codewords with parity zero.
- (ii) Let $\mathbf{x} \in \mathbb{F}_3^{11}$ and $\mathbf{c} \in G^{(0)}$. Since $G^{(0)}$ is a ternary code with minimum distance d = 6 and covering radius 5, for the case $d(\mathbf{x}, \mathbf{c}) = i$, where i = 0, 1, 2 we have clearly that

$$a_i = (q-2)i = i, b_i = 22 - (q-1)i = 22 - 2i, c_i = i.$$

Consider the case i = 3. Let \mathbf{x} be a vector of weight 3 and let $W(\mathbf{x})$ be a sphere of radius one with center \mathbf{x} . Since $G_6^{(0)}$ is a ternary 3-design $T(11, 6, 3, 2)_3$, for any vector $\mathbf{x} \in \mathbb{F}_3^{11}$ of weight three there exist exactly two codewords, say \mathbf{z}_1 and \mathbf{z}_2 from $G_6^{(0)}$ of weight 6 and one codeword, say \mathbf{v} from G_5 , which cover \mathbf{x} . Since $d(\mathbf{z}_1, \mathbf{z}_2) = 6$ and $d(\mathbf{z}_i, \mathbf{v}) = 5$ for i = 1, 2, all these three vectors \mathbf{z}_1 , \mathbf{z}_2 and \mathbf{v} have intersection only on supp(\mathbf{x}). Hence, the

coordinate set $J = \{1, 2, ..., 11\}$ of G is partitioned into four disjoint subsets, namely,

$$J = \operatorname{supp}(\mathbf{x}) \cup \operatorname{supp}(\mathbf{v} - \mathbf{x}) \cup \operatorname{supp}(\mathbf{z}_1 - \mathbf{x}) \cup \operatorname{supp}(\mathbf{z}_2 - \mathbf{x}). \tag{2}$$

Now let $\mathbf{y} \in W(\mathbf{x})$. We consider four cases j), j = 1, 2, 3, 4, denoting by $a_{3,j}, b_{3,j}, c_{3,j}$ the contributions to intersection numbers a_3, b_3, c_3 for the case j).

- 1). $\operatorname{wt}(\mathbf{y}) = 2$, $\operatorname{supp}(y) \subseteq \operatorname{supp}(\mathbf{x})$. For this case, we obtain that $c_{3,1} = 3$.
- 2). $\operatorname{wt}(\mathbf{y}) = 3$, $\operatorname{supp}(y) \subseteq \operatorname{supp}(\mathbf{x})$. We deduce here that $a_{3,2} = 3(q-2) = 3$.
- 3). $\operatorname{wt}(\mathbf{y}) = 4$, $\operatorname{supp}(y) \subset \operatorname{supp}(\mathbf{v})$. First, assume that \mathbf{y} is covered by \mathbf{v} . Since \mathbf{v} has the weight 5, it occurs for two distinct vectors \mathbf{y} . Hence we obtain, that $b_{3,3} = 2$. Assume now that \mathbf{y} is not covered by \mathbf{v} . We claim that \mathbf{y} belongs to $G^{(0)}(3)$. Indeed, let \mathbf{x}_1 of weight three obtained from \mathbf{y} by deleting the first nonzero positions of \mathbf{x} . Now \mathbf{x}_1 should be covered by one codeword, say \mathbf{v}_1 from G_5 . But $d(\mathbf{v}, \mathbf{v}_1) \geq 5$, which implies that \mathbf{v}_1 should have the zero element on the first position of \mathbf{x} (if not \mathbf{v} and \mathbf{v}_1 will be at distance 4 from each other). Now, there are two codewords, say \mathbf{z}_3 and \mathbf{z}_4 , covering \mathbf{x}_1 . Recalling the partition (2) (i.e. four sets $\sup(\mathbf{x}_1)$, $\sup(\mathbf{v}_1 \mathbf{x}_1)$, $\sup(\mathbf{v}_1 \mathbf{x}_1)$, and $\sup(\mathbf{z}_4 \mathbf{x}_1)$ partition the set J), we conclude, therefore, that one of these words \mathbf{z}_3 or \mathbf{z}_4 will have a nonzero element on the first position of \mathbf{x} . We conclude that $a_{3,3} = 2(q-2) = 2$.
- 4). $\operatorname{wt}(\mathbf{y}) = 4$, $\operatorname{supp}(y) \subset \operatorname{supp}(\mathbf{z}_i)$, $i \in \{1, 2\}$. If \mathbf{y} is covered by some z_s , $s \in \{1, 2\}$, this means that $\mathbf{y} \in G^{(0)}(2)$, which implies that $c_{3,4} = 2 \cdot |\operatorname{supp}(\mathbf{z}_s)| = 2 \cdot 3 = 6$. If \mathbf{y} is not covered by \mathbf{z}_s , this means that $\mathbf{y} \in G^{(0)}(3)$, which gives $a_{3,4} = 2 \cdot |\operatorname{supp}(\mathbf{z}_s)| (q-2) = 2 \cdot 3(q-2) = 6$.

Thus all four cases give:

$$c_3 = 6 + 3 = 9$$
, $a_3 = 3 + 2 + 5 = 11$, $b_3 = 2$.

For the case i = 4, 5 we deduce using Lemma 3

$$a_i = b_i = 5 - i$$
, $c_i = 22 - 2(5 - i)$.

(iii) The parameters α_i come from the equation (1) and Lemma 7. Since for the code G we have that $\rho = 5$ and d = 6 we obtain $\alpha_0 = 1$.

Now we find α_5 . Take as **x** any vector from G_5 . We see that

$$f_5(\mathbf{x}) = \frac{|G_5|}{q-1} = \frac{1}{2}|G_5| = 66.$$

This gives

$$\alpha_5 = \frac{1}{f_5(\mathbf{x})} = \frac{1}{66}.$$

For α_1 we have, taking **x** of weight one:

$$\alpha_1 \cdot f_1(\mathbf{x}) + \alpha_5 \cdot f_5(\mathbf{x}) = 1. \tag{3}$$

Clearly $f_1(\mathbf{x}) = 1$. Since $G_6^{(0)}$ is a 3-design T(11, 6, 3, 2), there are

$$\frac{6}{(q-1)n} |T(11,6,3,2)| = 36$$

codewords from $G_6^{(0)}$ covering **x**. Using α_5 in (3), we deduce that $\alpha_1 = 5/11$.

For \mathbf{x} of weights 2, 3, 4 we have respectively

$$\alpha_2 \cdot 1 + \alpha_4 \cdot 9 + \alpha_5 \cdot 18 = 1,\tag{4}$$

$$\alpha_3 \cdot 3 + \alpha_4 \cdot 6 + \alpha_5 \cdot 21 = 1,\tag{5}$$

and

$$\alpha_4 \cdot 15 + \alpha_5 \cdot 15 = 1, \tag{6}$$

From (6) we obtain that $\alpha_4 = 17/330$, and using this in (4) and in (5) we obtain α_2 and α_3 given in the statement. \triangle

Lemma 8 Let G be the ternary perfect Golay $[11, 6, 5]_3$ -code. Let $G^{(s)}$ be the [10, 5, 5] code, obtained by shortening of G and let $G^{(s)}(\rho)$ be the covering set of $G^{(s)}$. Then the sets $G_5^{(s)}$, $G_6^{(s)}$ and $G^{(s)}(\rho)_4$ are ternary 2-designs $T(10, 5, 2, 4)_3$, $T(10, 6, 2, 8)_3$ and $T(10, 4, 2, 2)_3$ respectively.

Proof. This follows directly from Lemma 7. \triangle

Theorem 2 Let G be the ternary perfect Golay $[11,6,5]_3$ -code. Denote by $G^{(s)}$ the [10,5,5] code, obtained by shortening of G. Then:

- (i) $G^{(s)}$ is a completely regular code with covering radius 4 and with intersection array $\{20, 18, 4, 1; 1, 2, 18, 20\}$.
- (ii) $G^{(s)}$ is uniformly packed in the wide sense, i.e. in the sense of [1] with parameters α_i :

$$\alpha_0 = 1, \ \alpha_1 = \frac{2}{5}, \ \alpha_2 = \frac{7}{30}, \ \alpha_3 = \frac{1}{12}, \ \alpha_4 = \frac{1}{30}.$$

Proof. (i) Since $G^{(s)}$ is a ternary code with minimum distance d=5 and with covering radius $\rho=4$ we deduce that

$$a_i = i(q-2) = i$$
, $b_i = 22 - i(q-1) = 22 - 2i$, $c_i = i$, $i = 0, 1$,

and, from Lemma 3,

$$a_i = b_i = 4 - i$$
, $c_i = 22 - 2(4 - i)$, $i = 3, 4$.

Thus we have to find only these parameters for i = 2. Let \mathbf{x} be a vector of weight two, and let $\mathbf{y} \in W(\mathbf{x})$. We consider four cases, using the same notation $a_{2,s}, b_{2,s}, c_{2,s}$ for contribution of each case s = 1, 2, 3, 4.

- 1) wt(y) = 1. Since $y \in G^{(s)}(1)$ we have for this case that $c_{2,1} = 2$.
- 2) wt(y) = 2. Now $y \in G^{(s)}(2)$ and we obtain that $a_{2,2} = 2(q-2) = 2$.
- 3) wt(\mathbf{y}) = 3 and $\mathbf{y} \in G^{(s)}(3)$. Since $G^{(s)}(\rho)_4$ is $T(10, 4, 2, 2)_3$, this happens exactly four times (indeed, two vectors of weight four from $T(10, 4, 2, 2)_3$, covering \mathbf{x} intersect each other only on supp(\mathbf{x})). We conclude that $b_{2,3} = 2(q-1) = 4$.
- 4) wt(\mathbf{y}) = 3 and $\mathbf{y} \in G^{(s)}(2)$. Here we have to show only that these cases 3) and 4) include all possible cases. Hence it is enough to show that any \mathbf{y} , covering \mathbf{x} , can not be covered by any vector from $G^{(s)}(\rho)_4$. This is clear since \mathbf{x} is covered already by two vectors from $G^{(s)}(\rho)_4$ (the case 3)). Therefore we deduce that $a_{2,4} = (2 \cdot 8 4) = 12$. Summing up all cases we obtain that

$$a_2 = 2 + 12 = 14, b_2 = 4, c_2 = 2.$$

This finishes the first part of the proof.

(ii) Since $G^{(s)}$ is a code with d=5 and $\rho=4$ we deduce that $\alpha_0=1$. Choosing **x** from $G^{(s)}(\rho)_4$, we conclude that $f_4(\mathbf{x}) = |G^{(s)}(\rho)_4|/(q-1)$. Since $|G^{(s)}(\rho)_4| = |T(10,4,2,2)_3| = 60$, we obtain that $\alpha_4 = (q-1)/|G^{(s)}(\rho)_4| = 1/30$.

Now let \mathbf{x} be a vector of weight one. For α_1 we have the following equation:

$$\alpha_1 \cdot f_1(\mathbf{x}) + \alpha_4 \cdot f_4(\mathbf{x}) = 1. \tag{7}$$

We have that $f_1(\mathbf{x}) = 1$. The number $f_4(\mathbf{x})$ is the number of codewords $G_5^{(s)}$ (of weight five) covering \mathbf{x} , i.e. having fixed nonzero element in fixed

position. Since $G_5^{(s)}$ is a ternary 2-design T(10,5,2,4), we obtain for this number:

$$|T(10,5,2,4)| \cdot \frac{5}{10 \cdot 2} = 18.$$

Hence $f_4(\mathbf{x}) = 18$ and we deduce from (7) that $\alpha_1 = 2/5$.

Now taking a vector \mathbf{x} of weight two, say $\mathbf{x} = (1, 1, 0, ..., 0)$, we will have the equation:

$$\alpha_2 \cdot f_2(\mathbf{x}) + \alpha_3 \cdot f_3(\mathbf{x}) + \alpha_4 \cdot f_4(\mathbf{x}) = 1. \tag{8}$$

Clearly $f_2(\mathbf{x}) = 1$. Since $G_5^{(s)}$ is a ternary 2-design $T(10, 5, 2, 4)_3$, we have (by the definition of 2-design) that $f_3(\mathbf{x}) = 4$. But $G_6^{(s)}$ is 2-design $T(10, 6, 2, 5)_3$. This gives a contribution of 5 for the number $f_4(\mathbf{x})$. Now taking into account $2 \cdot 4$ codewords from $G_5^{(s)}$ starting from (1, 2, ...) and from (2, 1, ...) (which are at distance 4 from \mathbf{x}), we obtain that $f_4(\mathbf{x}) = 13$. Using this in (8), we obtain that

$$\alpha_2 + 4\alpha_3 = \frac{17}{30}. (9)$$

Now let $\operatorname{wt}(\mathbf{x}) = 3$ such that $\mathbf{x} \in G^{(s)}(3)$. For this case we have

$$\alpha_3 \cdot f_3(\mathbf{x}) + \alpha_4 \cdot f_4(\mathbf{x}) = 1. \tag{10}$$

By the same way we obtain for this case, that $f_3(\mathbf{x}) = 6$ and $f_4(\mathbf{x}) = 15$. From the equation above, we obtain $\alpha_3 = 1/12$ and using this in (9), we deduce that $\alpha_2 = 7/30$. \triangle

Note that the completely regular code $G^{(s)}$ constructed in this Theorem 2 is the dual of the punctured dual Golay code (see Lemma 4) and although $G^{(s)}$ is not self-dual is equivalent (see Lemma 6) to the punctured code of $G^{(0)}$ (the code constructed in Theorem 1).

In fact, the result of Theorem 2 holds for any q-ary perfect code with minimum distance 5. Since, for the case when q is not a prime power, the existence of such codes is an open problem, we give the next results.

Lemma 9 Let G be a q-ary perfect $(n + 1, qN, 5)_q$ code. Denote by $G^{(s)}$ the $(n, N, 5)_q$ code, obtained by shortening of G on the element 0 in the first position. Then:

(i) The set G_5 is a q-ary Steiner system $S(n+1,5,3)_q$ and the set G_6 is 3-design $T(n+1,6,3,\gamma_6)_q$, where

$$\gamma_6 = \frac{1}{3} ((q-1)(n-10)+6).$$

(ii) The sets $G_5^{(s)}$, $G_6^{(s)}$, and $G^{(s)}(4)_4$ are q-ary 2-designs $T(n, 5, 2, \beta_5)_q$, $T(n, 6, 2, \beta_6)$, and $T(n, 4, 2, q - 1)_q$, respectively, where

$$\beta_5 = \frac{1}{3}(q-1)(n-4), \ \beta_6 = \frac{1}{12}(q-1)(n-5)((q-1)(n-10)+6).$$

Proof. By definition of perfect code the set G_5 is a Steiner system $S(n+1,5,3)_q$ (indeed, any vector of weight 3 should be covered by exactly one codeword of G_5). Now considering all vectors of weight 4 we deduce that the set G_6 is a 3-design $T(n+1,6,3,\gamma_6)_q$ where γ_6 is written above. Now considering all these words from $G_5^{(s)}$ and $G_6^{(s)}$ we obtain 2-designs, given in the statement. \triangle

Theorem 3 Let G be a q-ary perfect $(n + 1, qN, 5)_q$ code. Denote by $G^{(s)}$ the (n, N, 5) code, obtained by shortening of G on the element 0 in the first position. Then:

(i) $G^{(s)}$ is a completely regular code with covering radius 4 and with intersection array

$$\{(q-1)n, (q-1)(n-1), 2(q-1), 1; 1, 2, (q-1)(n-1), (q-1)n\}.$$

(ii) $G^{(s)}$ is uniformly packed in the wide sense, i.e. in the sense of [1] with parameters α_i where $\alpha_0 = 1$ and

$$\alpha_1 = \frac{4}{n}, \ \alpha_2 = \frac{2(2n+3q-8)}{(q-1)n(n-1)}, \ \alpha_3 = \frac{6(3q-4)}{(q-1)^2n(n-1)}, \ \alpha_4 = \frac{12}{(q-1)^2n(n-1)}.$$

Proof. (i) Since $G^{(s)}$ is a code with minimum distance d=5 and covering radius $\rho=4$ we obtain:

$$a_i = i(q-2), b_i = (q-1)n - i(q-1), c_i = i, i = 0, 1$$

and, from Lemma 3,

$$a_i = (4-i)(q-2), b_i = 4-i, c_i = (q-1)n - (4-i)(q-1), i = 3, 4.$$

Thus we have to find only these parameters for i = 2. Let \mathbf{x} be a vector of weight two, and let $\mathbf{y} \in W(\mathbf{x})$. Since $G_5^{(s)}$ and $G^{(s)}(4)_4$ are 2-designs (see Lemma 9), there are exactly β_5 codewords \mathbf{u}_j , $j = 1, ..., \beta_5$ and q - 1 vectors $\mathbf{v}_1, ..., \mathbf{v}_{q-1}$, covering \mathbf{x} . We consider five cases, using the same notation $a_{2,s}, b_{2,s}, c_{2,s}$ for contribution of each case s = 1, 2, 3, 4, 5.

- 1) wt(y) = 1. Since $y \in G^{(s)}(1)$ we have for this case that $c_{2,1} = 2$.
- 2) wt(y) = 2. Now $y \in G^{(s)}(2)$ and we obtain that $a_{2,2} = 2(q-2)$.
- 3) wt(\mathbf{y}) = 3 and $\mathbf{y} = \mathbf{v}_s$, s = 1, ..., q 1. Since $G^{(s)}(\rho)_4 = G^{(s)}(4)_4$ is $T(n, 4, 2, q 1)_3$, this happens exactly 2(q 1) times (indeed, q 1 vectors of weight four from $G^{(s)}(\rho)_4$, covering \mathbf{x} , intersect each other only on supp(\mathbf{x})).

We conclude that $b_{2,3} = 2(q-1)$.

- 4) wt(\mathbf{y}) = 3 and supp(\mathbf{y}) = supp(\mathbf{v}_s), $\mathbf{y} \neq \mathbf{v}_s$, s = 1, ..., q-1. Here we have that $d(\mathbf{y}, \mathbf{v}_s) = 2$. Denote by \mathbf{v}_s^* the codeword of G_5 which results in \mathbf{v}_s when we build $G^{(s)}$ from G. Let $\mathbf{y}^* = (0 | \mathbf{y})$. Then we have that $d(\mathbf{y}^*, \mathbf{v}_s^*) = 3$. We conclude that it can not be covered by any vector from $G^{(s)}(4)_4$ (since all such vectors have a nonzero first position). But G is perfect code, hence there is some codeword from G_5 covering \mathbf{y}^* . So, the only possibility is that it is covered by codeword of G_5 , having 0 on the first position. But such words form the set $G_5^{(s)}$. Therefore, \mathbf{y} is covered by some codeword of $G_5^{(s)}$. This gives $a_{2,4} = 2(q-1)(q-2)$.
- 5) wt(\mathbf{y}) = 3, supp(\mathbf{y}) \neq supp(\mathbf{v}_s), s = 1, ..., q-1. We claim that any such \mathbf{y} is covered by some \mathbf{u}_j from $G_5^{(s)}$. Indeed, using the same arguments as we used for the case 4), we can see easily, that such \mathbf{y} can not be covered by any vector from $G^{(s)}(4)_4$. But, from the other side, the corresponding vector $\mathbf{y}^* = (0 \mid \mathbf{y})$ should be covered by some codeword of G_5 . Therefore, \mathbf{y}^* should be covered by some codeword from $G_5^{(s)}$. We deduce that $a_{2,4} = (n-2-2(q-1))(q-1)$. Summing up our results, we obtain that

$$a_2 = n(q-1) - 2q$$
, $b_2 = 2(q-1)$, $c_2 = 2$.

This finishes the proof of (i).

(ii) Since $G^{(s)}$ has the minimum distance d=5 and the covering radius $\rho=4$, we obtain that $\alpha_0=1$.

Now we find α_4 . Taking any $\mathbf{x} \in G^{(s)}(4)_4$ we obtain that

$$\alpha_4 \cdot f_4(\mathbf{x}) = 1.$$

Let $\mathbf{x}^* = (x_0 | \mathbf{x})$, where $x_0 \neq 0$, be the corresponding vector from G_5 . It

is clear that the number of codewords of G_5 does not change, if we shift G by \mathbf{x}^* . Thus $f_4(\mathbf{x})$ is equal to the number of codewords from G_5 with fixed element x_0 on the first position, i.e. to the number $|G^{(s)}(4)_4|/(q-1)$. Since $G^{(s)}(4)_4$ is a design T(n, 4, 2, q-1), we obtain

$$\alpha_4 = \frac{1}{f_4(\mathbf{x})} = \frac{q-1}{|G^{(s)}(4)_4|} = \frac{12}{(q-1)^2 n(n-1)}.$$

Now let \mathbf{x} have weight 1. Then we have

$$\alpha_1 \cdot f_1(\mathbf{x}) + \alpha_4 \cdot f_4(\mathbf{x}) = 1.$$

We have $f_1(\mathbf{x}) = 1$ and $f_4(\mathbf{x})$ is equal to the number of codewords of $G_5^{(s)}$ with some fixed nonzero element in the first position. Since $G_5^{(s)}$ is $T(n, 5, 2, \beta_5)$ with $\beta_5 = \frac{1}{3}(q-1)(n-4)$, we obtain

$$f_4(\mathbf{x}) = \frac{1}{12} \cdot (q-1)^2 (n-1)(n-4)$$
.

Hence

$$\alpha_1 = 1 - \alpha_4 f_4(\mathbf{x}) = \frac{4}{n}.$$

For any vector \mathbf{x} of weight 2 we have the equation

$$\alpha_2 \cdot f_2(\mathbf{x}) + \alpha_3 \cdot f_3(\mathbf{x}) + \alpha_4 \cdot f_4(\mathbf{x}) = 1. \tag{11}$$

Denote by $g_j(w)$ the number of codewords of weight w of $G^{(s)}$ which are at distance j from given \mathbf{x} . Since $G_5^{(s)}$ is $T(n, 5, 2, \beta_5)$, we deduce that $g_3(5) = \beta_5$. It is also clear that $g_4(5) = 2(q-2)\beta_5$. Indeed, there are exactly $2 \cdot (q-2) \cdot \beta_5$ codewords of $G_5^{(s)}$ having two nonzero positions on supp(\mathbf{x}), where exactly one of these positions coincides with one position of \mathbf{x} . Now we have to

consider the codewords from $G_6^{(s)}$. Since $G_6^{(s)}$ is $T(n, 6, 2, \beta_6)$ we obtain that $g_4(6) = \beta_6$. Thus, we have

$$f_3(\mathbf{x}) = q_3(5) = \beta_5, \quad f_4(\mathbf{x}) = q_4(5) + q_4(6) = 2(q-2)\beta_5 + \beta_6.$$

Using expressions for β_5 and β_6 in Lemma 9 we obtain from (11) the following expression:

$$\alpha_2 + \alpha_3 \cdot \frac{1}{3} (q-1)(n-4) = 1 - \alpha_4 \cdot f_4(\mathbf{x}) = \frac{2(n-1) + 3(q-1)(n-3)}{(q-1)n(n-1)}.$$
 (12)

We have one more linear equation on α_2 and α_3 , coming from sphere packing conditions for uniformly packed codes [1], namely

$$\sum_{j=0}^{4} \alpha_j (q-1)^j \binom{n}{j} = \frac{q^n}{|G^{(s)}|}. \tag{13}$$

Since $|G^{(s)}| = |G|/q$, taking into account that G is perfect, we obtain from (13) that

$$\sum_{j=0}^{4} \alpha_j (q-1)^j \binom{n}{j} = \frac{q^{n+1}}{|G|} = \sum_{s=0}^{2} (q-1)^s \binom{n+1}{s}. \tag{14}$$

Using now known values α_j for j = 0, 1 and j = 4, we reduce the equality above to the following expression:

$$\frac{2(3(q-1)(n-1)+(n-3))}{(q-1)n(n-1)} = \alpha_2 + \frac{1}{3}(q-1)(n-2)\alpha_3.$$
 (15)

From (12) and (15) we deduce the values of α_2 and α_3 . \triangle

4 New q-ary completely regular codes from q-ary 1-perfect codes

Now we turn to q-ary 1-perfect codes. For the case d=3 Lemma 2 looks as follows.

Lemma 10 Let H be a q-ary perfect $(n, N, 3)_q$ -code with zero codeword. Let H_w be the set of all codewords with weight w. Then the set H_3 is a q-ary Steiner system $S(n, 3, 2)_q$ and the set H_w , if it is nonempty, is a q-ary 2-design $T(n, w, \lambda_w)_q$, where w = 4, ..., n and where λ_w can be found from the weight distribution of H. In particular,

$$\lambda_4 = \frac{1}{2} \cdot (n(q-1) - 5q + 7) .$$

Theorem 4 Let H be a q-ary perfect $(n, N, 3)_q$ -code where q be any natural number and where n is odd. Let C be any subcode of H with minimum distance $d_C = 4$ and cardinality |C| = |H|/q and with following property. For any choice of zero codeword in H, the set C_4 is a 2-design $T(n, 4, 2, \beta_4)_q$, where $\beta_4 = (n-3)/2$. Then:

(i) C is a completely regular code with covering radius $\rho = 3$ and with intersection numbers

$$((q-1)n, (q-1)(n-1), 1; 1, (n-1), (q-1)n). (16)$$

(ii) C is uniformly packed in the wide sense with parameters α_i :

$$\alpha_0 = 1, \ \alpha_1 = \frac{3}{n}, \ \alpha_2 = \frac{2(n+2(q-2))}{(q-1)n(n-1)}, \ \alpha_3 = \frac{6}{(q-1)n(n-1)}.$$
 (17)

Proof. (i) We start with the intersection numbers of C. For the case i=0,1 we have immediately (since C has minimum distance 4 and covering radius 3)

$$a_0 = 0$$
, $b_0 = (q - 1)n$, and $c_1 = 1$, $a_1 = q - 2$, $b_1 = (q - 1)(n - 1)$.

The case i = 3 is straightforward: $c_3 = (q - 1)n$ and $a_3 = 0$.

Thus, we have to consider only the case i = 2, for which we claim that

$$a_2 = (q-2)n, b_2 = 1, c_2 = (n-1).$$

Let \mathbf{x} be any vector of weight two and let $\mathbf{y} \in W(\mathbf{x})$. Since H_3 is the Steiner system $S(n,3,2)_q$, there is the vector $\mathbf{v} \in H_3$, covering \mathbf{x} . Similarly, since C_4 is the $T(n,4,2,\beta_4)_q$ with $\beta_4 = (n-3)/2$, there are β_4 codewords, say \mathbf{u}_j , $j=1,...,\beta_4$ all of them covering \mathbf{x} . Since C_4 is a code with minimum distance four and since H_3 is at distance three from C_4 , we obtain the following disjoint partition of the coordinate set J of H:

$$J = \operatorname{supp}(\mathbf{x}) \bigcup \operatorname{supp}(\mathbf{v} - \mathbf{x}) \bigcup \left(\bigcup_{j=1}^{\beta_4} \operatorname{supp}(\mathbf{u}_j - \mathbf{x}) \right). \tag{18}$$

Consider the following cases, counting as before the contributions of each case.

- 1) wt(y) = 1. We have $c_{2,1} = 2$.
- 2) wt(y) = 2. This case gives $a_{2,2} = 2(q-2)$.
- 3) $\mathbf{y} = \mathbf{v}$. Since H_3 ia a Steiner system, this happens only once. Hence, $b_{2,3} = 1$.
- 4) $\operatorname{supp}(\mathbf{y}) = \operatorname{supp}(\mathbf{v}), \ \mathbf{y} \neq \mathbf{v}$. Let the vector \mathbf{x}_1 of weight two be obtained from \mathbf{y} by changing the first nonzero, say ℓ^* -th position of \mathbf{x} to zero. For this \mathbf{x}_1 there is one vector, say \mathbf{v}_1 from H_3 , covering \mathbf{x}_1 . Also there are exactly β_4 codewords, say \mathbf{w}_j , $j = 1, ..., \beta_4$ from C_4 , covering \mathbf{x}_1 . All these vectors \mathbf{x}_1 , \mathbf{v}_1 , and \mathbf{w}_j , define the partition of set J, as in (18). Hence the ℓ^* -th element of J should be either in $\operatorname{supp}(\mathbf{v}_1)$ or in $\operatorname{supp}(\mathbf{w}_j \mathbf{x}_1)$ for some j (it can not be in $\operatorname{supp}(\mathbf{x}_1)$ by the choice of \mathbf{x}_1). But both vectors \mathbf{v} and \mathbf{v}_1 belong to H_3 . Hence $d(\mathbf{v}, \mathbf{v}_1) = 3$ and \mathbf{v}_1 should have the zero element in its ℓ^* -th position.

Therefore, one of the vectors \mathbf{w}_j will cover the ℓ^* -th position, which implies that \mathbf{y} belongs to C(2). This gives $a_{2,4} = q - 2$.

- 5) $\operatorname{supp}(\mathbf{y}) \subset \operatorname{supp}(\mathbf{u}_j)$, \mathbf{y} is covered by \mathbf{u}_j . Since there are exactly $\beta_4 = (n-3)/2$ codewords \mathbf{u}_j covering \mathbf{y} we have clearly $c_{2,5} = n-3$.
- 6) $\operatorname{supp}(\mathbf{y}) \subset \operatorname{supp}(\mathbf{u}_j)$, \mathbf{y} is not covered by \mathbf{u}_j . In this case $\mathbf{y} \in C(2)$. Thus, we obtain $a_{2,6} = (q-2)(n-3)$.

Summing up contributions of all these cases, we obtain the expressions above for a_2, b_2 and c_2 .

(ii) We have to find the parameters α_i , i = 0, 1, 2, 3. Since $d > \rho$ we have that $\alpha_0 = 1$. We can find easily α_3 since for any word \mathbf{v} from H_3' we have $d(\mathbf{v}, C) = 3$, i.e. \mathbf{v} is in $C(\rho) = C(3)$:

$$\alpha_3 = \frac{q-1}{|H_3'|} = \frac{6}{(q-1)n(n-1)}.$$

Now assume that $\mathbf{x} = (1, 0, 0, ..., 0)$. From (1) we have

$$\alpha_1 \cdot f_1(\mathbf{x}) + \alpha_3 \cdot f_3(\mathbf{x}) = 1. \tag{19}$$

It is clear that $f_1(\mathbf{x}) = 1$. Since the set C_4 is a 2-design, namely $T(n, 4, 2, \beta_4)_q$, we obtain that

$$f_3(\mathbf{x}) = \frac{1}{3} \cdot (n-1)(q-1)\beta_4 = \frac{1}{6}(q-1)(n-1)(n-3).$$

Using these formulas for $f_i(\mathbf{x})$ we find α_1 :

$$\alpha_1 = (1 - \alpha_3 f_3(\mathbf{x})) = \frac{3}{n}.$$

which gives the expression for α_1 of the theorem.

Since we know that C is uniformly packed in the wide sense (since it is completely regular), we can find easily α_2 from the packing conditions (see [1]), namely

$$\sum_{i=0}^{3} \alpha_i (q-1)^i \binom{n}{i} = \frac{q^n}{|C|}.$$

 \triangle

Now we prove one more theorem which gives for the case $q=2^s$, s=2,3,... a new completely regular code of length n=q+1 with $\rho=3$, which is a subcode of a q-ary perfect code of such length. This case is connected with MDS codes, i.e. $(n,N,d)_q$ codes with cardinality $N=q^{n-d+1}$ (see [9]).

Theorem 5 Let $q=2^s \geq 4$ where s=2,3... Let H be a q-ary perfect Hamming $[q+1,q-1,3]_q$ -code, i.e. H is also an MDS code. Then:

- (i) There is the $[q+1, q-2, 4]_q$ code C, which is a subcode of H.
- (ii) C is a completely regular code with covering radius $\rho = 3$ and with intersection array

$$(q^2 - 1, q(q - 1), 1; 1, q, q^2 - 1).$$
 (20)

(iii) C is uniformly packed in the wide sense with parameters α_i :

$$\alpha_0 = 1, \ \alpha_1 = \frac{3}{q+1}, \ \alpha_2 = \frac{6}{q(q+1)}, \ \alpha_3 = \frac{6}{q(q^2-1)}.$$
 (21)

Proof. Assume that $q=2^s$, where s=2,3,... For this case we know that there exists the linear Hamming code H=[q+1,q-1,3] which it is also an MDS code. Let $\xi_0=0,\ \xi_1=1,\ \xi_2,\ \cdots,\ \xi_{q-1}$ be the elements of GF(q). Then the parity check matrix for H is

$$\begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & 0 \\ 1 & \xi_2 & \cdots & \xi_{q-1} & 0 & 1 \end{pmatrix}$$

and

$$H_c = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 & 0 \\ 1 & \xi_2 & \cdots & \xi_{q-1} & 0 & 1 \\ 1 & \xi_2^2 & \cdots & \xi_{q-1}^2 & 0 & 0 \end{pmatrix}$$

is the parity check matrix for the linear subcode C of H with parameters [q+1,q-2,4]. Code C is an MDS code of minimum distance 4 because any three columns in H_c are linearly independent. Note that any three of the first columns in H_c is a Vandermonde matrix. Also, given three columns including one or both of the last two columns, we can compute the determinant of these three columns and get always a nonzero result, since all the ξ_j^2 are different.

Now any MDS code $[n, k, d]_q$ has (see Section 11.4 in [9])

$$(q-1)\binom{n}{d}$$

codewords of minimum weight d. For our case we obtain, that C has cardinality

$$|C_4| = \frac{n(n-1)}{12}(q-1)^2 \left(\frac{1}{2}(n-3)\right).$$
 (22)

It is known that any MDS code is distance invariant (see [9]). Hence from Theorem 4 we have only to show that C_4 is a q-ary 2-design $T(q+1,4,2,\beta_4)$ with $\beta_4 = (q-2)/2$. From (22) it follows that in average each vector $\mathbf{x} \in \mathbb{F}_q^n$ of weight two is covered by β_4 codewords from C_4 . But this value is an upper bound for this number. Indeed, recall that H_3 is a q-ary Steiner system. This means that \mathbf{x} is covered by the unique codeword from H_3 . Since C is a subcode of H, surely the words from C_4 are at distance 3 from H_3 . So, for any $\mathbf{x} \in \mathbb{F}_q^n$ of weight 2 there is a unique position, say $j = j(\mathbf{x})$ which can not be covered by any codewords from C_4 covering \mathbf{x} . But this exactly

means that β_4 can not be more than (n-3)/2 = (q-2)/2 (the vector \mathbf{x} of weight two is covered by codewords of weight four). Now the statements of theorem follow from Theorem 4. \triangle

In fact, any q-ary perfect code of length n with d=3 gives a completely regular code of length n-1 and covering radius $\rho=2$.

Theorem 6 Let H be a q-ary perfect (n, N, 3) code where q is any natural number. Denote by $H^{(s)}$ the (n - 1, N/q, 3) code, obtained from H by shortening on zero element in the first position. Then:

- (i) $H^{(s)}$ is completely regular with $\rho = 2$ and with intersection array ((n-1)(q-1), q-1; 1, (n-1)(q-1)).
- (ii) $H^{(s)}$ is uniformly packed in the wide sense with parameters α_i :

$$\alpha_0 = 1$$
, $\alpha_1 = \frac{2}{n-1}$, $\alpha_2 = \frac{2}{(q-1)(n-1)}$.

Proof. Since d=3 and $\rho=2$ we have immediately that

$$a_0 = 0$$
, $b_0 = (n-1)(q-1)$, and $a_2 = 0$, $c_2 = (n-1)(q-1)$.

Thus, we have to find only a_1, b_1 and c_1 . Let \mathbf{x} be any vector of weight one, say, $\mathbf{x} = (1, 0, ..., 0)$ and let $\mathbf{y} \in W(\mathbf{x})$. We have to consider four cases.

- 1) $\operatorname{wt}(\mathbf{y}) = 0$. For this case we have $c_{1,1} = 1$.
- 2) $\operatorname{wt}(\mathbf{y}) = 1$. We have clearly $a_{1,2} = q 2$.
- 3) wt(\mathbf{y}) = 2 and $\mathbf{y} \in H^{(s)}(2)_2$. Since H_3 is a Steiner system $S(n,3,2)_q$ this happens exactly q-1 times. Indeed, any vector $\mathbf{z} = (\gamma|1,0,...,0) \in F^n$ (where $\gamma \neq 0$) is covered by exactly one codeword, say \mathbf{v}'_{γ} from H_3 . For the code H this means that the vector $\mathbf{x} = (1,0,...,0)$ is covered by exactly q-1 vectors \mathbf{v}_{γ} obtained from \mathbf{v}'_{γ} removing the first position. This gives

 $b_{1,3} = q - 1.$

4) wt(\mathbf{y}) = 2 and $\mathbf{y} \in H^{(s)}(1)$. We have to show, that the condition $\mathbf{y} \notin H^{(s)}(2)_2$ implies $\mathbf{y} \in H^{(s)}(1)$. Indeed, any vector \mathbf{y} of weight two is covered by some codeword from H_3 . But by the previous arguments (used for the case 3)), it can not be covered by any such word, having first nonzero position (we mentioned all such q-1 words \mathbf{v}'_{γ}). Hence these vectors \mathbf{y} will be covered by vectors from H_3 having first zero position. But such vectors are codewords of new code $H^{(s)}$. Therefore, we deduce that $a_{1,4} = (n-1)(q-1) - 2q + 2$.

Summing up our results we obtain the expressions for the numbers a_1, b_1 and c_1 . This gives (i). The second part (ii) follows similarly to the previous cases, since we know already that $H^{(s)}$ is completely regular and, hence, uniformly packed in the wide sense. \triangle

References

- [1] L.A. Bassalygo, G.V. Zaitsev & V.A. Zinoviev, "Uniformly packed codes," *Problems Inform. Transmiss.*, vol. 10, no. 1, pp. 9-14, 1974.
- [2] L.A. Bassalygo & V.A. Zinoviev, "Remark on uniformly packed codes," Problems Inform. Transmiss., vol. 13, no. 3, pp. 22-25, 1977.
- [3] T. Beth, D. Junickel and H. Lenz, Design Theory. Manheim, Germany: Wiessenschaftverlag, 1985; Cambridge, U.K.: Cambridge Univ. Press, 1986.

- [4] J. Borges, J. Rifa & V.A. Zinoviev, "New completely regular and completely transitive binary codes", *IEEE Trans. on Information Theory*, 2005, submitted.
- [5] J. Borges, J. Rifa & V.A. Zinoviev, "On non-antipodal binary completely regular codes", *Discrete Mathematics*, 2005, submitted.
- [6] A.E. Brouwer, "A note on completely regular codes", Discrete Mathematics, vol. 83, pp. 115-117, 1990.
- [7] P. Delsarte, "An algebraic approach to the association schemes of coding theory," Philips Research Reports Supplements, vol. 10, 1973.
- [8] J.M. Goethals & H.C.A. Van Tilborg, "Uniformly packed codes," *Philips Res.*, vol. 30, pp. 9-36, 1975.
- [9] F.J. MacWilliams & N.J.A. Sloane, The Theory of Error Correcting Codes. North-Holland, New York, 1977.
- [10] A. Neumaier, "Completely regular codes," Discrete Maths., vol. 106/107, pp. 335-360, 1992.
- [11] P. Solé, "Completely Regular Codes and Completely Transitive Codes," Discrete Maths., vol. 81, pp. 193-201, 1990.
- [12] N.V. Semakov & V.A. Zinoviev, "Constant weight codes and tactical configurations", *Problems Inform. Transmiss.*, vol. 5, no. 3, pp. 29-39, 1969.
- [13] N.V. Semakov, V.A. Zinoviev & G.V. Zaitsev, "Uniformly packed codes," *Problems Inform. Transmiss.*, vol. 7, no. 1, pp. 38-50, 1971.

- [14] A. Tietäväinen, "On the non-existence of perfect codes over finite fields," SIAM J. Appl. Math., vol. 24, pp. 88-96, 1973.
- [15] H.C.A. Van Tilborg, Uniformly packed codes. Ph.D. Eindhoven Univ. of Tech., 1976.
- [16] V. Zinoviev and V. Leontiev, "On perfect codes," *Problems of Information Transmission*, vol. 8, no. 1, pp. 26-35, 1972.
- [17] V. Zinoviev and V. Leontiev, "The nonexistence of perfect codes over Galois fields," Problems of Control and Information Th., vol. 2, no. 2, pp. 16-24, 1973.