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Abstract

In this paper from q-ary perfect codes new completely regular q-ary codes

are constructed. In particular, two new ternary completely regular codes

are obtained from ternary Golay [11, 6, 5] code. The first [11, 5, 6] code with

covering radius ρ = 4 coincides with the dual Golay code and its intersection

array is (22, 20, 18, 2, 1; 1, 2, 9, 20, 22) . The second [10, 5, 5] code, with cover-

ing radius ρ = 4, coincides with the dual code of the punctured dual Golay

code and has the intersection array given by (20, 18, 4, 1; 1, 2, 18, 20).

New q-ary completely regular codes are obtained from q-ary perfect codes

with d = 3. It is shown that under certain conditions a q-ary perfect (n, N, 3)

code gives a new q-ary completely regular code with d = 4, covering radius

ρ = 3 and intersection array (n(q − 1), (n− 1)(q − 1), 1; 1, (n− 1), n(q − 1)).

For the case q = 2m, (m ≥ 2) this gives, in particular, an infinite family

of new q-ary completely regular [q + 1, q − 2, 4] codes with covering radius

ρ = 3 and with intersection array (q2 − 1, q(q − 1), 1; 1, q, q2 − 1). Any q-ary

perfect (n,N, 3) code gives a new completely regular (n−1, N/q, 3) code with

covering radius ρ = 2 and intersection array ((n − 1)(q − 1), (q − 1); 1, (n −

1(q − 1)).
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perfect codes, q-ary codes, t-designs.

MR Subject Classification: 94B25, 05B05



1 Introduction

Let F be arbitrary finite alphabet of size q with elements, denoted by {0, 1, ..., q−

1}, assuming that F is at least an abelian group with an addition operation

denoted by “+” (and inverse operation “-”) and with zero element denoted

by 0. Let wt(v) denote the Hamming weight of a vector v ∈ F n (i.e. the

number of its nonzero positions), and d(v,u) = wt(v − u) denote the Ham-

ming distance between two vectors v and u. By the same way (i.e. “+”/“-”)

we denote the component-wise addition/substruction of vectors of F n). A

q-ary (n, N, d)q-code C is a subset of F n where n is the length, d is the min-

imum distance, and N = |C| is the cardinality of C. For the case when F is

a finite field Fq and C is a k-dimensional linear subspace of Fn
q , C is a linear

code, denoted [n, k, d]q, where N = qk.

Given any vector v ∈ F n, its distance to the code C is

d(v, C) = min
x∈C

{d(v,x)} ,

and the covering radius of the code C is

ρ = max
v∈F n

.{d(v, C)}

For a given q-ary code C with covering radius ρ = ρ(C) define

C(i) = {x ∈ F n : d(x, C) = i}, i = 1, 2, ..., ρ.

We assume that a q-ary code C always contains the zero vector, if it is

not stated the opposite. Let D = C + x be a shift of C. The weight

wt(D) of D is the minimum weight of the codewords of D. For an arbitrary

shift D of weight i = wt(D) denote by µ(D) = (µ0(D), µ1(D), ..., µn(D)) its
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weight distribution, where µi(D) denotes the number of words of D of weight

i. Denote by Cj (respectively, Dj, and C(i)j) the subset of C (respectively,

of D and C(i)), formed by all words of the weight j. In our terminology

µi(D) = |Di|.

Definition 1 A q-ary code C with covering radius ρ is called completely

regular if the weight distribution of any shift D of weight i, i = 0, 1, ..., ρ

of C is uniquely defined by the minimum weight of D, i.e. by the number

i = wt(D).

Let C be a q-ary e-error-correcting code, i.e. a code with d ≥ 2e + 1.

It has been conjectured for a long time that if C is a completely regular

code and |C| > 2, then e ≤ 3. Moreover, in [10] it is conjectured that the

only completely regular code C with |C| > 2 and d ≥ 8 is the well known

extended binary Golay (24, 212, 8) code with ρ = 4. As we know from the

results [14, 17] for the case ρ = e and [13, 15, 8]) for the case ρ = e + 1, any

such nontrivial unknown code should have a covering radius ρ ≥ e + 2.

This paper is a natural continuation of our previous papers [4] and [5],

where we derived many new completely regular and completely transitive

binary codes, and described all non-antipodal binary such codes. Moreover

in [4], we have disproved the conjecture of Neumaier above (see [10] ), finding

new completely regular binary [23, 11, 8]-code with covering radius ρ = 7 and

with intersection array (23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23).

Our purpose in this paper is to prove the existence of new q-ary completely

regular codes. In particular, we proved that the ternary [11, 5, 6]-code, which

is a third part of the perfect ternary Golay [11, 6, 5]-code is a completely
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regular code with minimal distance 6, with covering radius ρ = 5 and with

intersection array (22, 20, 18, 2, 1; 1, 2, 9, 20, 22). Puncturing of this code also

gives a new completely regular code with minimal distance 5, with covering

radius ρ = 4 and with intersection array (20, 18, 4, 1; 1, 2, 18, 20). In fact, in

Section 3, we prove that the shortened Golay code is completely regular, but

this shortened code is equivalent to that punctured.

A q-th part of a q-ary perfect (n = (qm − 1)/(q − 1), N = qn−m, 3)-code

with Hamming parameters gives under certain conditions a new completely

regular code with d = 4 and ρ = 3 and intersection array ((q − 1)n, (q −

1)(n− 1), 1; 1, n− 1, (q− 1)n). Furthermore, any q-ary perfect (n, N, 3)-code

gives a new q-ary completely regular (n − 1, N/q, 3) code with ρ = 2 and

intersection array ((q − 1)(n− 1), q − 1; 1, (q − 1)(n− 1)).

All these new codes are uniformly packed in the wide sense, i.e. in the

sense of [1, 2].

The paper is organized as follows. In Section 2 we give some preliminary

results concerning q-ary completely regular codes. In Section 3 we give new

q-ary completely regular codes, obtained from ternary perfect Golay code.

Section 4 is dedicated to new q-ary completely regular codes, obtained from

q-ary 1-perfect codes.

2 Preliminary results

We give some definitions, notations and results which we will need. Given

two sets X, Y ⊂ F n, define their minimum distance d(X, Y ):

d(X, Y ) = min{d(x,y) : x ∈ X, y ∈ Y }.
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We write X + x instead of X + {x}. For a given vector x ∈ F n let x̄ denote

any of q vectors at distance n from x, i.e. d(x, x̄) = n).

Definition 2 Let C be a q-ary code of length n and let ρ be its covering

radius. We say that C is uniformly packed in the wide sense, i.e. in the

sense of [1], if there exist rational numbers α0, . . . , αρ such that for any

v ∈ F n

ρ∑
k=0

αk fk(v) = 1 , (1)

where fk(v) is the number of codewords at distance k from v.

We use also the definition of completely regularity given in [10].

Definition 3 A code C is completely regular if, for all l ≥ 0, every vector

x ∈ C(l) has the same number cl of neighbors in C(l − 1) and the same

number bl of neighbors in C(l + 1). Also, define al = (q − 1)n − bl − cl and

note that c0 = bρ = 0. Define by {b0, . . . , bρ−1; c1, . . . , cρ} the intersection

array of C and by L the intersection matrix of C:

L =



a0 b0 0 0 · · · 0

c1 a1 b1 · · · 0 0

0 c2
. . . . . . 0 0

...
...

. . . . . . . . . 0

0 0
...

. . . . . . bρ−1

0 0 · · · · · · cρ aρ


.

The support of v ∈ F n , v = (v1, . . . , vn) is supp(v) = { ` | v` 6= 0 }. Say

that a vector v covers a vector z if the condition zi 6= 0) implies zi = vi.

Following [16], we use the following q-ary t-designs.
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Definition 4 A set T of vectors v ∈ F n of weight w is a q-ary t-design,

denoted T (n, w, t, λ)q, if for any vector z ∈ F n of weight t, 1 ≤ t ≤ w,

there are precisely λ vectors vi, i = 1, ..., λ, from T (n,w, t, λ)q, each of them

covering z. If λ = 1 we call this t-design by a q-ary Steiner system and

denote by S(n,w, t)q.

Definition 5 Let F be an abelian group under addition. We say that a

vector x = (x1, ..., xn) ∈ F n has parity s, s ∈ F , if

n∑
i=1

xi = s.

Definition 6 We say that a q-ary code C with minimum distance d and with

zero codeword has t-design property, if any nonempty set Cj, d ≤ j ≤ n, is

a q-ary t-design.

The following well known fact directly follows from the definition of com-

pletely regular code.

Lemma 1 Let C be a completely regular code with minimum distance d and

with zero codeword. Then C has t-design property, where t = e, if d = 2e+1

and t = e + 1, if d = 2e + 2.

For perfect codes with d = 2e + 1 this statement can be formulated as

follows.

Lemma 2 Let C be a q-ary perfect code with minimum distance d = 2e + 1

and with zero codeword. Then C has t-design property, where t = e + 1.

Furthermore, the set Cd is a q-ary Steiner system S(n, d, e + 1)q.
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Proof. For Cd the result is straightforward. Indeed, by definition of

perfect code any vector x ∈ F n of weight e + 1 should be covered by exactly

one codeword of weight d, which implies that Cd is a Steiner system S(n, d, e+

1)q. For larger weights it can be done using the same arguments as in [13]

for the binary case. 4

The next statement can be found in [10] for binary codes. For the case

q > 2 it can be proved easily.

Lemma 3 If C is completely regular with covering radius ρ, then C(ρ) is also

completely regular, with reversed intersection array and distribution diagram.

Next three Lemmas will be needed in the following Section.

Lemma 4 Let C be a q-ary linear code and denote by C(s) the shortened

code of C formed by taking the codewords of C which have a fixed coordinate

equal to zero and then by deleting this fixed coordinate. Let C⊥ be the dual

code of C and C(p) the punctured code of C, i.e. obtained from C by deleting

the fixed coordinate. Then

C(s)⊥ = C⊥(p)

Proof. It is straightforward. 4

Lemma 5 Let C be the Golay code (binary or ternary). Then, C(0), the

subcode of C formed by all codewords with parity zero coincides with the dual

code of C.

Proof. The Golay code (binary or ternary) is a cyclic, quadratic-residue

code C of length, respectively, n = 23 and n = 11. We know (see [9]) that
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xn − 1 = (x− 1)·g(x)·h(x), where g(x) is the generator polynomial of C and

h(x) is the reciprocal polynomial of g(x).

Let C(0) be the subcode of C formed by all codewords with parity zero.

Code C(0) is a cyclic code with generator matrix (x − 1)·g(x) and the dual

code C(0)⊥ is a cyclic code with generator polynomial given by the reciprocal

polynomial of h(x) which coincides with g(x), so C(0) = C⊥. 4

Lemma 6 Let C be the Golay code (binary or ternary). Then, the two codes

C(0)(p) = C(s)⊥ and C(s) are equivalent, but C(s) is not a self-dual code.

Proof. We begin with the ternary case, so let C be the ternary Golay

code. Note that C(s) comes from the extended Golay code C(e) = [12, 36, 6]

taking the codewords with (0, 0), (1, 0) or (2, 0) as the first two coordinates

and deleting these two coordinates. Moreover note that C(0)(p) also comes

from the extended Golay code C(e) taking the codewords with (0, 0), (0, 1)

or (0, 2) as the first two coordinates and deleting these two coordinates.

It is very well-known that code C(e) is unique (see [9]), so the two construc-

tions above are equivalent. Moreover, looking at the two generator matrices

of codes C(s)⊥ and C(s) it is easy to see that C(s) is not a self-dual code.

Concerning the binary Golay case the proof is the same and we do not

repeat it.

7



3 New q-ary completely regular codes from

ternary Golay code

As we mentioned already the even, or odd half subcodes of a binary perfect

code, and codes, obtained by puncturing of these subcodes give new com-

pletely regular codes. For q-ary perfect codes it is not the case, since we can

not guarantee the existence of subcodes with minimum distance d = 4 for

perfect codes with Hamming parameters.

We start from the ternary Golay code. Before we consider some q-ary

designs, arising from the ternary Golay code.

Lemma 7 Let G be the ternary perfect Golay [11, 6, 5]3-code. Denote by G(0)

the subcode of G with minimum distance 6, formed by all codewords with zero

overall parity checking modulo 3. Then:

(i) Code G(0) is formed by the zero vector and all the codewords of G with

weights 6 and 9.

(ii) The set G5 is a ternary Steiner system S(11, 5, 3)3 and the sets G
(0)
6 and

G
(0)
9 are ternary 3-designs T (11, 6, 3, 2)3 and T (11, 9, 3, 3)3 respectively.

Proof. (i) It can be checked directly from construction of the ternary

Golay code.

(ii) By Lemma 2 the set G5 is a ternary Steiner system S(11, 5, 3). Now

by the same lemma the sets G6 and G9 are ternary 3-design. Taking into

account, that all codewords from G6 have the zero parity, we conclude that

G
(0)
6 = G6. Since |G(0)

6 | = 132, taking into account that it is a ternary 3-

design, we obtain that G
(0)
6 is T (11, 6, 3, 2)3. Similarly, since G

(0)
9 = G9 (all
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codewords from G9 have the zero parity) and since |G(0)
9 | = 110, we deduce

that G
(0)
9 is T (11, 9, 3, 3)3. 4

Theorem 1 Let G be the ternary perfect Golay [11, 6, 5]3-code. Denote by

G(0) the subcode of G with minimum distance 6, formed by all codewords with

zero overall parity checking modulo 3. Then:

(i) G(0) is the [11, 5, 6] code, dual to G.

(ii) G(0) is the completely regular code with covering radius 5 and with in-

tersection array {22, 20, 18, 2, 1; 1, 2, 9, 20, 22}.

(iii) G(0) is uniformly packed in the sense of [1] with parameters αi:

α0 = 1, α1 =
5

11
, α2 =

29

110
, α3 =

41

330
, α4 =

17

330
, α5 =

1

66
.

Proof. (i) By Lemma 5 the code G(0) coincides with the dual of G.

From the other side, the extension of G is a self-dual code (Theorem 16.19

in [9]). Hence G(0) is [11, 5, 6] formed by all codewords with parity zero.

(ii) Let x ∈ F11
3 and c ∈ G(0). Since G(0) is a ternary code with minimum

distance d = 6 and covering radius 5, for the case d(x, c) = i, where i = 0, 1, 2

we have clearly that

ai = (q − 2)i = i, bi = 22− (q − 1)i = 22− 2i, ci = i.

Consider the case i = 3. Let x be a vector of weight 3 and let W (x)

be a sphere of radius one with center x. Since G
(0)
6 is a ternary 3-design

T (11, 6, 3, 2)3, for any vector x ∈ F11
3 of weight three there exist exactly two

codewords, say z1 and z2 from G
(0)
6 of weight 6 and one codeword, say v from

G5, which cover x. Since d(z1, z2) = 6 and d(zi,v) = 5 for i = 1, 2, all these

three vectors z1, z2 and v have intersection only on supp(x). Hence, the
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coordinate set J = {1, 2, ..., 11} of G is partitioned into four disjoint subsets,

namely,

J = supp(x) ∪ supp(v − x) ∪ supp(z1 − x) ∪ supp(z2 − x). (2)

Now let y ∈ W (x). We consider four cases j), j = 1, 2, 3, 4, denoting by

a3,j, b3,j, c3,j the contributions to intersection numbers a3, b3, c3 for the case

j).

1). wt(y) = 2, supp(y) ⊆ supp(x). For this case, we obtain that c3,1 = 3.

2). wt(y) = 3, supp(y) ⊆ supp(x). We deduce here that a3,2 = 3(q− 2) = 3.

3). wt(y) = 4, supp(y) ⊂ supp(v). First, assume that y is covered by v.

Since v has the weight 5, it occurs for two distinct vectors y. Hence we

obtain, that b3,3 = 2. Assume now that y is not covered by v. We claim

that y belongs to G(0)(3). Indeed, let x1 of weight three obtained from y

by deleting the first nonzero positions of x. Now x1 should be covered by

one codeword, say v1 from G5. But d(v,v1) ≥ 5, which implies that v1

should have the zero element on the first position of x (if not v and v1 will

be at distance 4 from each other). Now, there are two codewords, say z3

and z4, covering x1. Recalling the partition (2) (i.e. four sets supp(x1),

supp(v1 − x1), supp(z3 − x1), and supp(z4 − x1) partition the set J), we

conclude, therefore, that one of these words z3 or z4 will have a nonzero

element on the first position of x. We conclude that a3,3 = 2(q − 2) = 2.

4). wt(y) = 4, supp(y) ⊂ supp(zi), i ∈ {1, 2}. If y is covered by some

zs, s ∈ {1, 2}, this means that y ∈ G(0)(2), which implies that c3,4 = 2 ·

|supp(zs)| = 2 · 3 = 6. If y is not covered by zs, this means that y ∈ G(0)(3),

which gives a3,4 = 2 · |supp(zs)|(q − 2) = 2 · 3(q − 2) = 6.
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Thus all four cases give:

c3 = 6 + 3 = 9, a3 = 3 + 2 + 5 = 11, b3 = 2.

For the case i = 4, 5 we deduce using Lemma 3

ai = bi = 5− i, ci = 22− 2(5− i).

(iii) The parameters αi come from the equation (1) and Lemma 7. Since

for the code G we have that ρ = 5 and d = 6 we obtain α0 = 1.

Now we find α5. Take as x any vector from G5. We see that

f5(x) =
|G5|
q − 1

=
1

2
|G5| = 66.

This gives

α5 =
1

f5(x)
=

1

66
.

For α1 we have, taking x of weight one:

α1 · f1(x) + α5 · f5(x) = 1. (3)

Clearly f1(x) = 1. Since G
(0)
6 is a 3-design T (11, 6, 3, 2), there are

6

(q − 1)n
|T (11, 6, 3, 2)| = 36

codewords from G
(0)
6 covering x. Using α5 in (3), we deduce that α1 = 5/11.

For x of weights 2, 3, 4 we have respectively

α2 · 1 + α4 · 9 + α5 · 18 = 1, (4)

α3 · 3 + α4 · 6 + α5 · 21 = 1, (5)
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and

α4 · 15 + α5 · 15 = 1, (6)

From (6) we obtain that α4 = 17/330, and using this in (4) and in (5)

we obtain α2 and α3 given in the statement. 4

Lemma 8 Let G be the ternary perfect Golay [11, 6, 5]3-code. Let G(s) be

the [10, 5, 5] code, obtained by shortening of G and let G(s)(ρ) be the cover-

ing set of G(s). Then the sets G
(s)
5 , G

(s)
6 and G(s)(ρ)4 are ternary 2-designs

T (10, 5, 2, 4)3, T (10, 6, 2, 8)3 and T (10, 4, 2, 2)3 respectively.

Proof. This follows directly from Lemma 7. 4

Theorem 2 Let G be the ternary perfect Golay [11, 6, 5]3-code. Denote by

G(s) the [10, 5, 5] code, obtained by shortening of G. Then:

(i) G(s) is a completely regular code with covering radius 4 and with intersec-

tion array {20, 18, 4, 1; 1, 2, 18, 20}.

(ii) G(s) is uniformly packed in the wide sense, i.e. in the sense of [1] with

parameters αi:

α0 = 1, α1 =
2

5
, α2 =

7

30
, α3 =

1

12
, α4 =

1

30
.

Proof. (i) Since G(s) is a ternary code with minimum distance d = 5 and

with covering radius ρ = 4 we deduce that

ai = i(q − 2) = i, bi = 22− i(q − 1) = 22− 2i, ci = i, i = 0, 1,

and, from Lemma 3,

ai = bi = 4− i, ci = 22− 2(4− i), i = 3, 4.
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Thus we have to find only these parameters for i = 2. Let x be a vector

of weight two, and let y ∈ W (x). We consider four cases, using the same

notation a2,s, b2,s, c2,s for contribution of each case s = 1, 2, 3, 4.

1) wt(y) = 1. Since y ∈ G(s)(1) we have for this case that c2,1 = 2.

2) wt(y) = 2. Now y ∈ G(s)(2) and we obtain that a2,2 = 2(q − 2) = 2.

3) wt(y) = 3 and y ∈ G(s)(3). Since G(s)(ρ)4 is T (10, 4, 2, 2)3, this happens

exactly four times (indeed, two vectors of weight four from T (10, 4, 2, 2)3,

covering x intersect each other only on supp(x)). We conclude that b2,3 =

2(q − 1) = 4.

4) wt(y) = 3 and y ∈ G(s)(2). Here we have to show only that these cases

3) and 4) include all possible cases. Hence it is enough to show that any y,

covering x, can not be covered by any vector from G(s)(ρ)4. This is clear since

x is covered already by two vectors from G(s)(ρ)4 (the case 3)). Therefore we

deduce that a2,4 = (2 · 8− 4) = 12. Summing up all cases we obtain that

a2 = 2 + 12 = 14, b2 = 4, c2 = 2.

This finishes the first part of the proof.

(ii) Since G(s) is a code with d = 5 and ρ = 4 we deduce that α0 = 1.

Choosing x from G(s)(ρ)4, we conclude that f4(x) = |G(s)(ρ)4|/(q− 1). Since

|G(s)(ρ)4| = |T (10, 4, 2, 2)3| = 60, we obtain that α4 = (q − 1)/|G(s)(ρ)4| =

1/30.

Now let x be a vector of weight one. For α1 we have the following equa-

tion:

α1 · f1(x) + α4 · f4(x) = 1. (7)

We have that f1(x) = 1. The number f4(x) is the number of codewords

G
(s)
5 (of weight five) covering x, i.e. having fixed nonzero element in fixed
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position. Since G
(s)
5 is a ternary 2-design T (10, 5, 2, 4), we obtain for this

number:

|T (10, 5, 2, 4)| · 5

10 · 2
= 18.

Hence f4(x) = 18 and we deduce from (7) that α1 = 2/5.

Now taking a vector x of weight two, say x = (1, 1, 0, ..., 0), we will have

the equation:

α2 · f2(x) + α3 · f3(x) + α4 · f4(x) = 1. (8)

Clearly f2(x) = 1. Since G
(s)
5 is a ternary 2-design T (10, 5, 2, 4)3, we have (by

the definition of 2-design) that f3(x) = 4. But G
(s)
6 is 2-design T (10, 6, 2, 5)3.

This gives a contribution of 5 for the number f4(x). Now taking into account

2 · 4 codewords from G
(s)
5 starting from (1, 2, ...) and from (2, 1, ...) (which

are at distance 4 from x), we obtain that f4(x) = 13. Using this in (8), we

obtain that

α2 + 4α3 =
17

30
. (9)

Now let wt(x) = 3 such that x ∈ G(s)(3). For this case we have

α3 · f3(x) + α4 · f4(x) = 1. (10)

By the same way we obtain for this case, that f3(x) = 6 and f4(x) = 15.

From the equation above, we obtain α3 = 1/12 and using this in (9), we

deduce that α2 = 7/30. 4

Note that the completely regular code G(s) constructed in this Theorem

2 is the dual of the punctured dual Golay code (see Lemma 4) and although

G(s) is not self-dual is equivalent (see Lemma 6) to the punctured code of

G(0) (the code constructed in Theorem 1).
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In fact, the result of Theorem 2 holds for any q-ary perfect code with

minimum distance 5. Since, for the case when q is not a prime power, the

existence of such codes is an open problem, we give the next results.

Lemma 9 Let G be a q-ary perfect (n + 1, qN, 5)q code. Denote by G(s)

the (n, N, 5)q code, obtained by shortening of G on the element 0 in the first

position. Then:

(i) The set G5 is a q-ary Steiner system S(n + 1, 5, 3)q and the set G6 is

3-design T (n + 1, 6, 3, γ6)q, where

γ6 =
1

3
((q − 1)(n− 10) + 6) .

(ii) The sets G
(s)
5 , G

(s)
6 , and G(s)(4)4 are q-ary 2-designs T (n, 5, 2, β5)q, T (n, 6, 2, β6),

and T (n, 4, 2, q − 1)q, respectively, where

β5 =
1

3
(q − 1)(n− 4), β6 =

1

12
(q − 1)(n− 5) ((q − 1)(n− 10) + 6) .

Proof. By definition of perfect code the set G5 is a Steiner system

S(n + 1, 5, 3)q (indeed, any vector of weight 3 should be covered by exactly

one codeword of G5). Now considering all vectors of weight 4 we deduce that

the set G6 is a 3-design T (n + 1, 6, 3, γ6)q where γ6 is written above. Now

considering all these words from G
(s)
5 and G

(s)
6 we obtain 2-designs, given in

the statement. 4

Theorem 3 Let G be a q-ary perfect (n + 1, qN, 5)q code. Denote by G(s)

the (n, N, 5) code, obtained by shortening of G on the element 0 in the first

position. Then:
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(i) G(s) is a completely regular code with covering radius 4 and with intersec-

tion array

{(q − 1)n, (q − 1)(n− 1), 2(q − 1), 1; 1, 2, (q − 1)(n− 1), (q − 1)n}.

(ii) G(s) is uniformly packed in the wide sense, i.e. in the sense of [1] with

parameters αi where α0 = 1 and

α1 =
4

n
, α2 =

2(2n + 3q − 8)

(q − 1)n(n− 1)
, α3 =

6(3q − 4)

(q − 1)2n(n− 1)
, α4 =

12

(q − 1)2n(n− 1)
.

Proof. (i) Since G(s) is a code with minimum distance d = 5 and covering

radius ρ = 4 we obtain:

ai = i(q − 2), bi = (q − 1)n− i(q − 1), ci = i, i = 0, 1

and, from Lemma 3,

ai = (4− i)(q − 2), bi = 4− i, ci = (q − 1)n− (4− i)(q − 1), i = 3, 4.

Thus we have to find only these parameters for i = 2. Let x be a vector of

weight two, and let y ∈ W (x). Since G
(s)
5 and G(s)(4)4 are 2-designs (see

Lemma 9), there are exactly β5 codewords uj, j = 1, ..., β5 and q− 1 vectors

v1, ...,vq−1, covering x. We consider five cases, using the same notation

a2,s, b2,s, c2,s for contribution of each case s = 1, 2, 3, 4, 5.

1) wt(y) = 1. Since y ∈ G(s)(1) we have for this case that c2,1 = 2.

2) wt(y) = 2. Now y ∈ G(s)(2) and we obtain that a2,2 = 2(q − 2).

3) wt(y) = 3 and y = vs, s = 1, ..., q − 1. Since G(s)(ρ)4 = G(s)(4)4 is

T (n, 4, 2, q−1)3, this happens exactly 2(q−1) times (indeed, q−1 vectors of

weight four from G(s)(ρ)4, covering x, intersect each other only on supp(x)).
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We conclude that b2,3 = 2(q − 1).

4) wt(y) = 3 and supp(y) = supp(vs), y 6= vs , s = 1, ..., q−1. Here we have

that d(y,vs) = 2. Denote by v∗s the codeword of G5 which results in vs when

we build G(s) from G. Let y∗ = (0 |y). Then we have that d(y∗,v∗s) = 3.

We conclude that it can not be covered by any vector from G(s)(4)4 (since

all such vectors have a nonzero first position). But G is perfect code, hence

there is some codeword from G5 covering y∗. So, the only possibility is that

it is covered by codeword of G5, having 0 on the first position. But such

words form the set G
(s)
5 . Therefore, y is covered by some codeword of G

(s)
5 .

This gives a2,4 = 2(q − 1)(q − 2).

5) wt(y) = 3, supp(y) 6= supp(vs), s = 1, ..., q−1. We claim that any such y

is covered by some uj from G
(s)
5 . Indeed, using the same arguments as we used

for the case 4), we can see easily, that such y can not be covered by any vector

from G(s)(4)4. But, from the other side, the corresponding vector y∗ = (0 |y)

should be covered by some codeword of G5. Therefore, y∗ should be covered

by some codeword from G
(s)
5 . We deduce that a2,4 = (n−2−2(q−1))(q−1).

Summing up our results, we obtain that

a2 = n(q − 1)− 2q, b2 = 2(q − 1), c2 = 2.

This finishes the proof of (i).

(ii) Since G(s) has the minimum distance d = 5 and the covering radius

ρ = 4, we obtain that α0 = 1.

Now we find α4. Taking any x ∈ G(s)(4)4 we obtain that

α4 · f4(x) = 1.

Let x∗ = (x0 |x), where x0 6= 0, be the corresponding vector from G5. It
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is clear that the number of codewords of G5 does not change, if we shift G

by x∗. Thus f4(x) is equal to the number of codewords from G5 with fixed

element x0 on the first position, i.e. to the number |G(s)(4)4|/(q − 1). Since

G(s)(4)4 is a design T (n, 4, 2, q − 1), we obtain

α4 =
1

f4(x)
=

q − 1

|G(s)(4)4|
=

12

(q − 1)2n(n− 1)
.

Now let x have weight 1. Then we have

α1 · f1(x) + α4 · f4(x) = 1.

We have f1(x) = 1 and f4(x) is equal to the number of codewords of G
(s)
5 with

some fixed nonzero element in the first position. Since G
(s)
5 is T (n, 5, 2, β5)

with β5 = 1
3
(q − 1)(n− 4), we obtain

f4(x) =
1

12
· (q − 1)2(n− 1)(n− 4) .

Hence

α1 = 1 − α4f4(x) =
4

n
.

For any vector x of weight 2 we have the equation

α2 · f2(x) + α3 · f3(x) + α4 · f4(x) = 1 . (11)

Denote by gj(w) the number of codewords of weight w of G(s) which are at

distance j from given x. Since G
(s)
5 is T (n, 5, 2, β5), we deduce that g3(5) = β5.

It is also clear that g4(5) = 2(q−2)β5. Indeed, there are exactly 2 · (q−2) ·β5

codewords of G
(s)
5 having two nonzero positions on supp(x), where exactly

one of these positions coincides with one position of x. Now we have to
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consider the codewords from G
(s)
6 . Since G

(s)
6 is T (n, 6, 2, β6) we obtain that

g4(6) = β6. Thus, we have

f3(x) = g3(5) = β5, f4(x) = g4(5) + g4(6) = 2(q − 2)β5 + β6.

Using expressions for β5 and β6 in Lemma 9 we obtain from (11) the following

expression:

α2+α3·
1

3
(q−1)(n−4) = 1 − α4·f4(x) =

2(n− 1) + 3(q − 1)(n− 3)

(q − 1)n(n− 1)
. (12)

We have one more linear equation on α2 and α3, coming from sphere packing

conditions for uniformly packed codes [1], namely

4∑
j=0

αj(q − 1)j

(
n

j

)
=

qn

|G(s)|
. (13)

Since |G(s)| = |G|/q, taking into account that G is perfect, we obtain from

(13) that

4∑
j=0

αj(q − 1)j

(
n

j

)
=

qn+1

|G|
=

2∑
s=0

(q − 1)s

(
n + 1

s

)
. (14)

Using now known values αj for j = 0, 1 and j = 4, we reduce the equality

above to the following expression:

2(3(q − 1)(n− 1) + (n− 3))

(q − 1)n(n− 1)
= α2 +

1

3
(q − 1)(n− 2)α3 . (15)

From (12) and (15) we deduce the values of α2 and α3. 4

4 New q-ary completely regular codes from

q-ary 1-perfect codes

Now we turn to q-ary 1-perfect codes. For the case d = 3 Lemma 2 looks as

follows.
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Lemma 10 Let H be a q-ary perfect (n, N, 3)q-code with zero codeword. Let

Hw be the set of all codewords with weight w. Then the set H3 is a q-ary

Steiner system S(n, 3, 2)q and the set Hw, if it is nonempty, is a q-ary 2-

design T (n, w, λw)q, where w = 4, ..., n and where λw can be found from the

weight distribution of H. In particular,

λ4 =
1

2
· (n(q − 1)− 5q + 7) .

Theorem 4 Let H be a q-ary perfect (n,N, 3)q-code where q be any natural

number and where n is odd. Let C be any subcode of H with minimum dis-

tance dC = 4 and cardinality |C| = |H|/q and with following property. For

any choice of zero codeword in H, the set C4 is a 2-design T (n, 4, 2, β4)q,

where β4 = (n− 3)/2. Then:

(i) C is a completely regular code with covering radius ρ = 3 and with inter-

section numbers

((q − 1)n, (q − 1)(n− 1), 1; 1, (n− 1), (q − 1)n). (16)

(ii) C is uniformly packed in the wide sense with parameters αi:

α0 = 1, α1 =
3

n
, α2 =

2(n + 2(q − 2))

(q − 1)n(n− 1)
, α3 =

6

(q − 1)n(n− 1)
. (17)

Proof. (i) We start with the intersection numbers of C. For the case

i = 0, 1 we have immediately (since C has minimum distance 4 and covering

radius 3)

a0 = 0, b0 = (q − 1)n, and c1 = 1, a1 = q − 2, b1 = (q − 1)(n− 1).

The case i = 3 is straightforward: c3 = (q − 1)n and a3 = 0.
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Thus, we have to consider only the case i = 2, for which we claim that

a2 = (q − 2)n, b2 = 1, c2 = (n− 1).

Let x be any vector of weight two and let y ∈ W (x). Since H3 is the Steiner

system S(n, 3, 2)q, there is the vector v ∈ H3, covering x. Similarly, since

C4 is the T (n, 4, 2, β4)q with β4 = (n− 3)/2, there are β4 codewords, say uj,

j = 1, ..., β4 all of them covering x. Since C4 is a code with minimum distance

four and since H3 is at distance three from C4, we obtain the following disjoint

partition of the coordinate set J of H:

J = supp(x)
⋃

supp(v − x)
⋃(

β4⋃
j=1

supp(uj − x)

)
. (18)

Consider the following cases, counting as before the contributions of each

case.

1) wt(y) = 1. We have c2,1 = 2.

2) wt(y) = 2. This case gives a2,2 = 2(q − 2).

3) y = v. Since H3 ia a Steiner system, this happens only once. Hence,

b2,3 = 1.

4) supp(y) = supp(v), y 6= v. Let the vector x1 of weight two be obtained

from y by changing the first nonzero, say `∗-th position of x to zero. For this

x1 there is one vector, say v1 from H3, covering x1. Also there are exactly β4

codewords, say wj, j = 1, ..., β4 from C4, covering x1. All these vectors x1,

v1, and wj, define the partition of set J , as in (18). Hence the `∗-th element

of J should be either in supp(v1) or in supp(wj − x1) for some j (it can not

be in supp(x1) by the choice of x1). But both vectors v and v1 belong to H3.

Hence d(v,v1) = 3 and v1 should have the zero element in its `∗-th position.
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Therefore, one of the vectors wj will cover the `∗-th position, which implies

that y belongs to C(2). This gives a2,4 = q − 2.

5) supp(y) ⊂ supp(uj), y is covered by uj. Since there are exactly β4 =

(n− 3)/2 codewords uj covering y we have clearly c2,5 = n− 3.

6) supp(y) ⊂ supp(uj), y is not covered by uj. In this case y ∈ C(2). Thus,

we obtain a2,6 = (q − 2)(n− 3).

Summing up contributions of all these cases, we obtain the expressions

above for a2, b2 and c2.

(ii) We have to find the parameters αi, i = 0, 1, 2, 3. Since d > ρ we have

that α0 = 1. We can find easily α3 since for any word v from H ′
3 we have

d(v, C) = 3, i.e. v is in C(ρ) = C(3):

α3 =
q − 1

|H ′
3|

=
6

(q − 1)n(n− 1)
.

Now assume that x = (1, 0, 0, ..., 0). From (1) we have

α1 · f1(x) + α3 · f3(x) = 1. (19)

It is clear that f1(x) = 1. Since the set C4 is a 2-design, namely T (n, 4, 2, β4)q,

we obtain that

f3(x) =
1

3
· (n− 1)(q − 1)β4 =

1

6
(q − 1)(n− 1)(n− 3).

Using these formulas for fi(x) we find α1:

α1 = (1 − α3f3(x)) =
3

n
.

which gives the expression for α1 of the theorem.
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Since we know that C is uniformly packed in the wide sense (since it is

completely regular), we can find easily α2 from the packing conditions (see

[1]), namely
3∑

i=0

αi(q − 1)i

(
n

i

)
=

qn

|C|
.

4

Now we prove one more theorem which gives for the case q = 2s, s =

2, 3, ... a new completely regular code of length n = q + 1 with ρ = 3, which

is a subcode of a q-ary perfect code of such length. This case is connected

with MDS codes, i.e. (n, N, d)q codes with cardinality N = qn−d+1 (see [9]).

Theorem 5 Let q = 2s ≥ 4 where s = 2, 3... . Let H be a q-ary perfect

Hamming [q + 1, q − 1, 3]q-code, i.e. H is also an MDS code. Then:

(i) There is the [q + 1, q − 2, 4]q code C, which is a subcode of H.

(ii) C is a completely regular code with covering radius ρ = 3 and with

intersection array

(q2 − 1, q(q − 1), 1; 1, q, q2 − 1). (20)

(iii) C is uniformly packed in the wide sense with parameters αi:

α0 = 1, α1 =
3

q + 1
, α2 =

6

q(q + 1)
, α3 =

6

q(q2 − 1)
. (21)

Proof. Assume that q = 2s, where s = 2, 3, .... For this case we know

that there exists the linear Hamming code H = [q+1, q−1, 3] which it is also

an MDS code. Let ξ0 = 0, ξ1 = 1, ξ2, · · · , ξq−1 be the elements of GF (q).

Then the parity check matrix for H is1 1 · · · 1 1 0

1 ξ2 · · · ξq−1 0 1
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and

Hc =


1 1 · · · 1 1 0

1 ξ2 · · · ξq−1 0 1

1 ξ2
2 · · · ξ2

q−1 0 0


is the parity check matrix for the linear subcode C of H with parameters

[q + 1, q− 2, 4]. Code C is an MDS code of minimum distance 4 because any

three columns in Hc are linearly independent. Note that any three of the first

columns in Hc is a Vandermonde matrix. Also, given three columns including

one or both of the last two columns, we can compute the determinant of these

three columns and get always a nonzero result, since all the ξ2
j are different.

Now any MDS code [n, k, d]q has (see Section 11.4 in [9])

(q − 1)

(
n

d

)
codewords of minimum weight d. For our case we obtain, that C has cardi-

nality

|C4| =
n(n− 1)

12
(q − 1)2

(
1

2
(n− 3)

)
. (22)

It is known that any MDS code is distance invariant (see [9]). Hence from

Theorem 4 we have only to show that C4 is a q-ary 2-design T (q + 1, 4, 2, β4)

with β4 = (q− 2)/2. From (22) it follows that in average each vector x ∈ Fn
q

of weight two is covered by β4 codewords from C4. But this value is an upper

bound for this number. Indeed, recall that H3 is a q-ary Steiner system.

This means that x is covered by the unique codeword from H3. Since C is

a subcode of H, surely the words from C4 are at distance 3 from H3. So,

for any x ∈ Fn
q of weight 2 there is a unique position, say j = j(x) which

can not be covered by any codewords from C4 covering x. But this exactly
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means that β4 can not be more than (n− 3)/2 = (q − 2)/2 (the vector x of

weight two is covered by codewords of weight four). Now the statements of

theorem follow from Theorem 4. 4

In fact, any q-ary perfect code of length n with d = 3 gives a completely

regular code of length n− 1 and covering radius ρ = 2.

Theorem 6 Let H be a q-ary perfect (n,N, 3) code where q is any natural

number. Denote by H(s) the (n− 1, N/q, 3) code, obtained from H by short-

ening on zero element in the first position. Then:

(i) H(s) is completely regular with ρ = 2 and with intersection array ((n −

1)(q − 1), q − 1; 1, (n− 1)(q − 1)).

(ii) H(s) is uniformly packed in the wide sense with parameters αi:

α0 = 1, α1 =
2

n− 1
, α2 =

2

(q − 1)(n− 1)
.

Proof. Since d = 3 and ρ = 2 we have immediately that

a0 = 0, b0 = (n− 1)(q − 1), and a2 = 0, c2 = (n− 1)(q − 1).

Thus, we have to find only a1, b1 and c1. Let x be any vector of weight one,

say, x = (1, 0, ..., 0) and let y ∈ W (x). We have to consider four cases.

1) wt(y) = 0. For this case we have c1,1 = 1.

2) wt(y) = 1. We have clearly a1,2 = q − 2.

3) wt(y) = 2 and y ∈ H(s)(2)2. Since H3 is a Steiner system S(n, 3, 2)q

this happens exactly q − 1 times. Indeed, any vector z = (γ|1, 0, ..., 0) ∈ F n

(where γ 6= 0) is covered by exactly one codeword, say v′γ from H3. For

the code H this means that the vector x = (1, 0, ..., 0) is covered by exactly

q − 1 vectors vγ obtained from v′γ removing the first position. This gives
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b1,3 = q − 1.

4) wt(y) = 2 and y ∈ H(s)(1). We have to show, that the condition y 6∈

H(s)(2)2 implies y ∈ H(s)(1). Indeed, any vector y of weight two is covered by

some codeword from H3. But by the previous arguments (used for the case

3)), it can not be covered by any such word, having first nonzero position (we

mentioned all such q−1 words v′γ). Hence these vectors y will be covered by

vectors from H3 having first zero position. But such vectors are codewords

of new code H(s). Therefore, we deduce that a1,4 = (n− 1)(q − 1)− 2q + 2.

Summing up our results we obtain the expressions for the numbers a1, b1

and c1. This gives (i). The second part (ii) follows similarly to the previous

cases, since we know already that H(s) is completely regular and, hence,

uniformly packed in the wide sense. 4
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[14] A. Tietäväinen, ”On the non-existence of perfect codes over finite fields,”

SIAM J. Appl. Math., vol. 24, pp. 88-96, 1973.

[15] H.C.A. Van Tilborg, Uniformly packed codes. Ph.D. Eindhoven Univ. of

Tech., 1976.

[16] V. Zinoviev and V. Leontiev, “On perfect codes,” Problems of Informa-

tion Transmission, vol. 8, no. 1, pp. 26-35, 1972.

[17] V. Zinoviev and V. Leontiev, “The nonexistence of perfect codes over

Galois fields,” Problems of Control and Information Th., vol. 2, no. 2,

pp. 16-24, 1973.

28


