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Abstract

Binary non-antipodal completely regular codes are characterized. Using the result

on nonexistence of nontrivial binary perfect codes, it is concluded that there are no

unknown nontrivial non-antipodal completely regular binary codes with minimum

distance d ≥ 3. The only such codes are halves and punctered halves of known

binary perfect codes. Thus, new such codes with covering radiuses ρ = 2, 3, 6 and

ρ = 7 are obtained. In particular, a half of the binary Golay [23, 12, 7]-code is a

new binary completely regular code with minimum distance d = 8 and covering

radius ρ = 7. The punctured half of the Golay code is a new completely regular

code with minimum distance d = 7 and covering radius ρ = 6. That new code with

d = 8 disproves the known conjecture of Neumaier, that the extended binary Golay

[24, 12, 8]-code is the only binary completely regular code with d ≥ 8. Halves of

binary perfect codes with Hamming parameters also provide an infinite family of

new binary completely regular codes with d = 4 and ρ = 3. Puncturing of these

codes also provide an infinite family of binary completely regular codes with d = 3
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and ρ = 2. Some of these new codes are also new completely transitive codes. Of

course, all these new codes are new uniformly packed codes in the wide sense.

1 Introduction

Let Fn be the n-dimensional vector space over F = GF (2). The Hamming

weight, wt(v), of a vector v ∈ Fn is the number of its nonzero coordinates.

The Hamming distance between two vectors v,u ∈ Fn is d(v,u) = wt(v +u).

A (binary) (n,N, d)-code C is a subset of Fn where n is the length, d is the

minimum distance, and N = |C| is the cardinality of C. Given any vector

v ∈ Fn, its distance to the code C is

d(v, C) = min
x∈C

{d(v,x)}

and the covering radius of the code C is

ρ(C) = ρ = max
v∈Fn

{d(v, C)}

Given two sets X, Y ⊂ Fn, define their minimum distance d(X, Y ) = min{d(x,y) : x ∈

X, y ∈ Y }. We write X + x instead of X + {x}. For a given vector x ∈ Fn

let x̄ be the complementary vector, i.e. d(x, x̄) = n. For a given set X ⊂ Fn

define the complementary set X̄ = {x̄ : x ∈ X}. We write 1 (respectively 0)

for the all one (respectively, all zero) vector in Fn.

For a given code C with covering radius ρ = ρ(C) define

C(i) = {x ∈ Fn : d(x, C) = i}, i = 1, 2, ..., ρ.
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We assume that the code C always contains the zero vector 0, unless stated

otherwise. Let D = C + x be a shift of C. The weight wt(D) of D is the

minimum weight of the codewords of D. For an arbitrary shift D of weight

i = wt(D) denote by µ(D) = (µ0(D), µ1(D), ..., µn(D)) its weight distribution

(µi(D) is the number of words of D of weight i). So µ(C) = (µ0(C), ..., µn(C))

is the weight distribution of C. If this vector µ(C) is the same for any shift

of C by a codeword, then C is distance invariant. Denote by Cj (respectively,

Dj, and C(i)j) the subset of C (respectively, of D and C(i)), formed by all

words of the weight j. In our terminology µi(D) = |Di|.

A (n, N, d) code C with minimum distance d = 2e + 1 we extend to (n +

1, N, d + 1) code C∗, adding one overall parity checking symbol to codewords

of C, and puncture to (n− 1, N, d− 1) code C(1), deleting any one position of

codewords of C

Definition 1 A code C is a completely regular if, for all l ≥ 0, every vector

x ∈ C(l) has the same number cl of neighbors in C(l − 1) and the same

number bl of neighbors in C(l + 1). Also, define al = n− bl − cl and note that

c0 = bρ = 0.

Define by {b0, . . . , bρ−1; c1, . . . , cρ} the intersection array of C and by L the

intersection matrix of C:

L =



a0 b0 0 0 · · · 0

c1 a1 b1 · · · 0 0

0 c2
. . . . . . 0 0

...
...

. . . . . . . . . 0

0 0
...

. . . . . . bρ−1

0 0 · · · · · · cρ aρ



.
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For a binary code C let Perm(C) be its permutation stabilizer group. For any

θ ∈ Perm(C) and any shift D = C + x of C define the action of θ to D as:

θ(D) = C + θ(x).

Definition 2 Let C be a binary additive code with covering radius ρ. The code

C is called completely transitive, if the set {C + x : x ∈ Fn} of all different

shifts of C is partitioned under action of Perm(C) exactly into ρ + 1 orbits.

Since two shifts in the same orbit should have the same weight distribution,

it is clear, that any completely transitive code is completely regular.

It has been conjectured for a long time that if C is a completely regular code

and |C| > 2, then e ≤ 3. Moreover, in [11] it is conjectured that the only

completely regular code C with |C| > 2 and d ≥ 8 is the extended binary

Golay [24, 12, 8]-code with ρ = 4. As we know from [15,17] for ρ = e and [16]

(see also [14,8]) for ρ = e + 1, any such nontrivial unknown code should have

a covering radius ρ ≥ e + 2. For the special case of completely regular codes,

for linear completely transitive codes [12], the problem of existence is solved:

we [2,3] proved that for e ≥ 4 such nontrivial codes do not exist.

In this paper we give a complete characterization of binary nontrivial, non-

antipodal, completely regular codes with distance d ≥ 3. The only such codes

are formed by halves of binary perfect codes. In particular, a half of the binary

Golay [23, 12, 7] code is a new non-antipodal completely regular [23, 11, 8] code

with covering radius ρ = 7 and intersection array

(23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23).

This result implies that the conjecture of Neumaier [11] is not valid. The

punctured half of the Golay code is a new non-antipodal completely regular

[22, 11, 7] code with covering radius ρ = 6 and intersection array

(22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22).
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Halves of binary perfect (n,N, 3) codes also give a new infinite family of com-

pletely regular codes with d = 4, ρ = 3 and intersection array (n, n−1, 1; 1, n−

1, n). The punctured halves of binary perfect (n, N, 3) codes are uniformly

packed in the narrow sense [14], and therefore are completely regular with

d = 3, ρ = 3 and intersection array (n, 1; 1, n). The same results are valid for

q-ary perfect codes, under certain conditions on original codes. In particular,

from the ternary Golay code we obtain new ternary completely regular code

with minimum distance 6, with covering radius 5 and with intersection array

(22, 20, 18, 2, 1; 1, 2, 9, 20, 22). New completely regular codes are considered in

separate paper [4].

The present paper is organized as follows. In Section 2 we give some prelimi-

nary results concerning completely regular codes. In Section 3 we prove that

the covering set C(ρ) of non-antipodal completely regular binary code C is its

shift by 1. This permits to us to lower and upper bound the covering radius of

non-antipodal completely regular codes. In Section 4 we prove that the only

non-antipodal completely regular codes are formed either by even (or odd)

codewords of any binary perfect codes, or the codes, obtained by puncturing

these codes.

2 Preliminary results

We give some definitions, and results which we will need later.

Definition 3 Let C be any binary code of length n and let ρ be its covering

radius. We say that such a code is uniformly packed in the wide sense, i.e.

in the sense of [1], if there exist rational numbers α0, . . . , αρ such that for

any v ∈ Fn

ρ∑
k=0

αk fk(v) = 1 , (1)

where fk(v) is the number of codewords at distance k from v. We say that
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such a code is strongly uniformly packed, or uniformly packed in the sense of

[14], if ρ = e + 1 and αe = αe+1, where e = b(d− 1)/2c.

The support of v ∈ Fn , v = (v1, . . . , vn) is supp(v) = { ` | v` 6= 0 }. Say that

a vector v covers a vector z if supp(z) ⊆ supp(v).

Definition 4 A t-design T (n,w, t, β) is a set of binary vectors of length n

and weight w such that for any binary vector z of weight t, 1 ≤ t ≤ w, there

are precisely β vectors vi, i = 1, ..., β, of T (n, w, t, β) each of them covering

z. If β = 1 the design T (n,w, t, 1) is a Steiner system S(n, w, t).

Definition 5 Say that a binary code C is even (respectively, odd) if all its

codewords have even (respectively, odd) weights.

The next fact follows from the definition of completely regular code.

Lemma 6 Let C be a completely regular code with minimum distance d and

with zero codeword. Then any nonempty set Cj, d ≤ j ≤ n, is a t-design,

where t = e, if d = 2e + 1 and t = e + 1, if d = 2e + 2.

Lemma 7 [11] If C is completely regular with covering radius ρ, then C(ρ)

is also completely regular, with reversed intersection array.

Definition 8 The code C is called antipodal, if for any c ∈ C the comple-

mentary vector c̄ = c + 1 is also a codeword of C.

It is clear that a distance invariant code C, containing 0, is antipodal if it

contains 1.

Lemma 9 Let C be any binary code. Then C and C(ρ) are antipodal or not

simultaneously.
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PROOF. Let C be any binary code, and let C(ρ) be the corresponding cov-

ering set of C. Assume that C is antipodal. To see that C(ρ) is antipodal we

take v ∈ C(ρ) and prove that 1 + v ∈ C(ρ). In order to do this we observe

that d(1 + v, C) = ρ, since

d(1 + v, C) = d(v,1 + C) = d(v, C) = ρ.

The statement follows now since the antipodality of C(ρ) implies the antipo-

dality of C by reversing of C and C(ρ). 2

3 On covering radius of non-antipodal binary completely regular

codes

The natural question is: does any completely regular code contain the vector

1?

Theorem 10 Let C be a completely regular code with covering radius ρ, with

minimum distance d ≥ 3. If 0 ∈ C, but 1 6∈ C, then 1 ∈ C(ρ) and C + 1 =

C(ρ). Furthermore

ρ ≥


2e, if d = 2e + 1,

2e + 1 if d = 2e + 2.

PROOF. Let C be a completely regular code and let 1 6∈ C. First we prove

that 1 ∈ C(ρ). In contrary, assume that 1 6∈ C(ρ). Consider the subset Cw of

C of the largest weight w and the subset C(ρ)v of C(ρ) of the largest weight

v. As C and C(ρ) do not contain 1, we have clearly: 1 ≤ n − w ≤ ρ − 1 and

1 ≤ n− v ≤ ρ− 1.

Now we claim that

(n− w) + (n− v) = ρ. (2)
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Indeed, C is a completely regular code in the Hamming space Fn, which is a

metric association scheme [7]. In particular, this means that for any vector x

from Fn there exist two vectors c ∈ C and v ∈ C(ρ) such that

d(c, x) + d(x, v) = ρ. (3)

Taking the vector 1 as x we immediately obtain (2), since we have that

d(1, Cw) = n− w and d(1, C(ρ)v) = n− v.

By Lemma 6, the set Cw is a t-design, say T1(n, w, t, β1) with t = e, or t = e+1,

where e = b(d−1)/2c. By the condition of theorem d ≥ 2 and, therefore, t ≥ 1.

By definition, d(C, C(ρ)) = ρ. Hence, these sets Cw and C(ρ)v are at distance

ρ at least from each other. Consider the complementary sets: S1 = C̄w with

vectors of weight w′ = n−w and S2 = C̄(ρ)v with vectors of weight v′ = n−v,

where 1 ≤ w′, v′ ≤ ρ− 1. From (2) we deduce that

w′ + v′ = ρ. (4)

But the set S1 (which is complementary of Cw) is a t-design also [13], say

T (n,w′, t, α1) with t ≥ 1. Taking any word z from S2 we can always find x

from S1 such that |supp(z) ∩ supp(x)| ≥ t. Taking into account this last fact,

we conclude that under the condition (4) these two sets S1 and S2 have the

minimum distance d(S1, S2) ≤ ρ − 2. Thus, we obtain a contradiction and 1

should belong to C(ρ).

Now we claim that C + 1 belongs to C(ρ). This comes from the fact that C

is completely regular, and, therefore, the distance distribution is the same for

all its codewords. And this distance distribution says that for any codeword

c ∈ C the complementary vector c̄ belongs to C(ρ). We conclude, therefore,

that C + 1 is a subset of C(ρ). But C + 1 is a shift of C of weight ρ, and any

such shift has the same weight distribution. But there is only one vector 1 of

weight n. So, we can have only one such shift. This means that |C(ρ)| = |C|
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and, therefore,

C + 1 = C(ρ). (5)

This last property implies immediately limitations for the possible values of

ρ. Indeed, since 1 belongs to C(ρ) the set Cn−ρ is not empty as well as the set

C(ρ)ρ, since (5). As Cn−ρ is a t-design (Lemma 6) the set C(ρ)ρ is a t-design

too [13], say T2(n, ρ, t, β2). By (5) we deduce that C(ρ)ρ is a constant weight

code with minimum distance d(T2) ≥ 2e + 2. If d = 2e + 1, we have t = e

(Lemma 6). This implies that ρ ≥ 2e if β2 = 1 and ρ ≥ 2e + 1 if β2 > 1. If

d = 2e + 2, we have t = e + 1 (Lemma 6). This implies that ρ ≥ 2e + 1 if

β2 = 1 and ρ ≥ 2e + 2 if β2 > 1. 2

Lemma 11 Let C and its (even or odd) extension C∗ be completely regular

codes of lengths n and n + 1 and with covering radii ρ and ρ + 1, respectively.

Then C and C∗ are antipodal or not simultaneously.

PROOF. Let 1 ∈ C. Assume, in contrary that 1 6∈ C∗. Then by Theorem 10,

1 ∈ C∗(ρ+1), and, therefore, 1 ∈ C(ρ), i.e. a contradiction. If C∗ is antipodal,

then clearly C is antipodal too. 2

The next two theorems upper bound the covering radius of any non-antipodal

nontrivial completely regular binary code.

Theorem 12 Let C be a nontrivial non-antipodal completely regular code with

covering radius ρ, with minimum distance d = 2e + 1 ≥ 3 and with zero word.

Then ρ = 2e.

PROOF. From Theorem 10 we have that ρ ≥ 2e. Assume that ρ ≥ 2e + 1.

By Lemma 6 the set Cd is a e-design, say Td(n, 2e+1, e, λd) and the set C(ρ)ρ

(since it is a complementary [13] of Cn−ρ which is also a e-design by Lemma

6) is an e-design too, say Tρ(n, ρ, e, λρ).
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Let J denote the coordinate set of C, i.e. J = {1, 2, ..., n}. For a given vector

x of weight e define the following subsets of J : Jx = supp(x), J
(1)
d is the union

of supp(c) \ supp(x) of all codewords c from Cd, covering x, and J (1)
ρ is the

union of supp(v) \ supp(x) of all words v from C(ρ)ρ, covering x. We note

that J
(1)
d and J (1)

ρ are disjoint, since any two words c ∈ Cd and v ∈ C(ρ)ρ can

not have more than e common nonzero positions, i.e.

supp(c) ∩ supp(v) ≤ e. (6)

Now we claim that

J = Jx

⋃
J

(1)
d

⋃
J (1)

ρ . (7)

Indeed, it comes from the fact that C is completely regular, and any vector z

of weight e + 1 covering x should be covered either by some codeword c from

Cd, or by some vector v from C(ρ)ρ. If it is not covered by any codeword from

Cd, then z is at distance e + 1 from C. Therefore, it should be at distance

ρ− (e+1) from C(ρ). This means that there is a vector v ∈ C(ρ)ρ covering z.

If we assume that z is covered by some possible vector u ∈ C(ρ)ρ+1, we will

have d(z,u) = d(z, C(ρ)) = ρ− e, i.e. a contradiction with d(z, C) = e + 1.

Thus, any vector x of weight e induces a partition of the coordinate set J into

three disjoint subsets Jx, J
(1)
d and J (1)

ρ . Since Cd is Td(n, d, e, λd), for any such

vector x of weight e we have

|J (1)
d | = (e + 1)λd. (8)

Remark that we can not write such kind of expression for J (1)
ρ , since we do

not know the value of ρ and the minimum distance of C(ρ)ρ.

Having these two equalities (7) and (8), it is easy to write out the intersection

numbers (ae, be, ce) for any such vector x of weight e:

ce = e, ae = |J (1)
d | = (e + 1)λd, be = |J (1)

ρ |. (9)
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Now we write out the numbers (aρ−e, bρ−e, cρ−e) which according to Lemma 7,

should be reversed of (ae, be, ce). For a given fixed v∗ ∈ C(ρ)ρ of weight ρ let

y be any vector of weight ρ− e which is covered by v∗. We have

cρ−e = ρ− e, aρ−e = |J (2)
d |, bρ−e = e + |J (2)

ρ |. (10)

Here the set J
(2)
d is the union of supp(c) \ supp(y) of all vectors c from Cd,

having e nonzero positions in supp(y). The set J (2)
ρ is the rest of J :

J (2)
ρ = J \

(
supp(v∗)

⋃
J

(2)
d

)
.

Now by Lemma 7 we have that ae = aρ−e and be = cρ−e. Taking into account

(9) and (10), we obtain

ae = |J (1)
d | = aρ−e = |J (2)

d | = (e + 1)λd. (11)

and |J (1)
ρ | = ρ − e. From the last equality we deduce that C(ρ)ρ (which is

Tρ(n, ρ, e, λρ)) is a Steiner system S(n, ρ, e). This implies that

n− e + 1

ρ− e + 1
= λS. (12)

is integer (since S(n, ρ, e) is also (e−1)-design T (n, ρ, e−1, λS)). Furthermore,

existence of S(n, ρ, e) for e > 1 implies existence of S(n − e + 2, ρ − e + 2, 2)

for which the Fisher inequality (see, for example, [9]) states that

|S(n− e + 2, ρ− e + 2, 2)| ≥ n− e + 2.

This can be written as: for e > 1

n ≥ (ρ− e + 1)2 + ρ. (13)

Using (7) and (8), we obtain that (n− ρ)/(e + 1) is integer:

λd =
n− ρ

e + 1
. (14)
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Now we want to upper bound ρ. For the case e > 1 we fix any v∗ ∈ C(ρ)ρ, take

any x ∈ Fn of weight e − 1, which is covered by v∗, and define the following

partitions of the set J \ supp(v∗). The partition S1, S2, ..., SλS−1 is formed

by supp(v) \ supp(x) of λS − 1 vectors v 6= v∗ from C(ρ)ρ, which covers x

(see (12)) and (ρ − e + 1) partitions L1(i), L2(i), ..., Lλd
(i) (see (14)), where

i ∈ supp(v∗)\supp(x), formed by supp(b(i))\supp(x) of λd vectors b(i) ∈ Cd

covering the set {i} ∪ supp(x), which is a subset of supp(v∗).

For e = 1 the Steiner system S(n, ρ, 1) consists of λS = n/ρ disjoint blocks.

Hence we fix one of its blocks v∗. Similarly, since i ∈ supp(v∗), we obtain ρ

different partitions L1(i), L2(i), ..., Lλd
(i), defined by i only.

By constructions we have the following properties of these partitions:

(P.1) The partition S1, S2, ..., SλS
and the partition L1(i), L2(i), ..., Lλd

(i) for

any i ∈ supp(v∗) \ supp(x) are disjoint, i.e. for all r, k, i, j, s, r 6= k, j 6= s:

Sr

⋂
Sk = ∅, and Lj(i)

⋂
Ls(i) = ∅.

(P.2) For any r, k, i, j, s, i 6= j, we have that

|Sr

⋂
Lk(i)| ≤ 1, and |Lr(i)

⋂
Ls(j)| ≤ 1.

(P.3) For any vector z of weight two with supp(z) ∈ J \ supp(v∗) there is the

set, either Sj, or Lk(i), containing supp(z).

The property (P.1) we have by definition of partitions. The first inequality

of (P.2) follows from (6) and the second follows, since any two words of Cd

have not more than e common nonzero positions. Now (P.3) follows from the

fact (which we already mentioned) that any vector y of weight e + 1 covering

x should be covered either by some vector from Cd, or by some vector from

C(ρ)ρ (see (7)).
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Now count by the two different ways the number of all vectors z of weight two

with supp(z) ∈ J \ supp(v∗). By (P.3) this number is equal to

(ρ− e + 1)

(
e + 1

2

)
λd +

(
ρ− e + 1

2

)
(λS − 1).

By definition this number is equal to(
n− ρ

2

)
.

Using (12) and (14), we deduce from the equality of these two numbers that

n = (e + 1)(ρ− e + 1) + ρ. (15)

Now, for the case e > 1, from (13) and (15) we obtain that ρ ≤ 2e, which

combining with Theorem 10 implies that ρ = 2e.

For the case e = 1 this expression (15) reduces to the following one:

n = 3ρ, (16)

or λd = ρ, if we take into account (14). Since we do not have (13) for e = 1,

this is not enough in order to upper bound ρ properly. To do it we extend the

sets C(ρ)ρ+1 and C(ρ)ρ+1.

Let x be any vector of weight e, and let z be a vector of weight e + 1 covering

x. Assume that z has one nonzero position on J
(1)
d , i.e. z is covered by some

codeword from Cd. Denote by ξρ the number of vectors from C(ρ)ρ+1 which

cover z. Since d(z, C) = e, there exist some vector u from C(ρ)ρ+1, which

covers z, implying that d(z, C(ρ)) = ρ− e how it should be. But d(x, C(ρ)) =

ρ − e also, and there is exactly one v covering x. We conclude that there is

exactly one u from C(ρ)ρ+1 covering z. Thus, any vector z ∈ Fn of weight

e + 1 is covered by exactly one vector from C(ρ)ρ+1 and any vector x ∈ Fn of

weight e is covered by exactly one vector from C(ρ)ρ. We deduce that adding

one position with 0 to all vectors from C(ρ)ρ+1 and one position with 1 to all
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vectors from C(ρ)ρ we get, respectively, C∗(ρ)ρ+1 and C∗(ρ)ρ and the union

C∗(ρ)ρ+1 ∪ C∗(ρ)ρ results in a Steiner system S(n + 1, ρ + 1, e + 1).

Now we apply the Fisher inequality to this Steiner system, which is a 2-design

for e = 1, i.e.:

|S(n + 1, ρ + 1, 2)| ≥ (n + 1).

This reduces to the inequality

n ≥ (ρ + 1)ρ.

Combining with (16) we deduce that ρ ≤ 2 and from Theorem 10, for the case

e = 1, we obtain ρ = 2. The theorem is proved. 2 2

Now we consider non-antipodal codes with even distance.

Theorem 13 Let C be a nontrivial non-antipodal completely regular code with

covering radius ρ, with minimum distance d ≥ 4 and with zero word. If d =

2e + 2 ≥ 4, then ρ = 2e + 1. Furthermore, C(ρ)ρ is a Steiner system

S(n, 2e + 1, e + 1).

PROOF. Assume in contrary that ρ ≥ 2e + 2. From Theorem 10 we have

that ρ ≥ 2e + 1. Note that Cd is (e + 1)-design, say Td(n, d, e + 1, λd), and

also C(ρ)ρ is Tρ(n, ρ, e + 1, λρ). Compute the intersection numbers (ai, bi, ci)

for i = e + 1 and for i = ρ− e− 1.

For a fixed vector x of weight e+1 denote Jx = supp(x). Define three subsets

of J \ Jx. The set J
(1)
d is formed by the supports of λd codewords c from Cd

covering x, the set J (1)
ρ is formed by the supports of λρ vectors v from C(ρ)ρ

covering x, and the set J
(1)
d+1:

J
(1)
d+1 = J \

(
Jx

⋃
J

(1)
d

⋃
J (1)

ρ

)
.
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Since any c ∈ Cd and v ∈ C(ρ)ρ can have not more than e+1 common nonzero

positions, i.e.

|supp(c)
⋂

supp(v) ≤ e + 1, (17)

we conclude that J
(1)
d and J (1)

ρ are disjoint. Therefore, J is partitioned into

four disjoint subsets Jx, J
(1)
d , J (1)

ρ and J
(1)
d+1. Denote such a partition by P (x),

since it is uniquely defined by x. Now we claim that J
(1)
d+1 is formed by all

λd+1 codewords from Cd+1 covering x. First, note that any such b ∈ Cd+1 (if

it exists), which covers x, does not have any nonzero positions on J
(1)
d and

J (1)
ρ (indeed, C is a code with d = 2e + 2 and ρ ≥ 2e + 2). To see that any

element of J
(1)
d+1 is contained in some b ∈ Cd+1, assume that it is not the case.

Let a vector y of weight e + 2 cover x and be not covered by any word from

J
(1)
d , J (1)

ρ or J
(1)
d+1. This means that y is at distance e + 2 from zero word, Cd,

and Cd+2 (if it is nonempty), at distance e + 3 from Cd+1, at distance ρ − e

from C(ρ)ρ, and at distance ρ − e − 1 from C(ρ)ρ+1 (if it is nonempty also).

Hence, y has distance e+2 from C and distance ρ− e− 1 from C(ρ), which is

impossible. The only possibility is that y is covered by some word from Cd+1.

We conclude also that Cd+1 and C(ρ)ρ+1 are empty or not simultaneously.

Since Cd is an (e + 1)-design, we know the cardinality of J
(1)
d . Indeed, the λd

codewords c from Cd, which cover x, have disjoint supports on J
(1)
d . Taking

into account that the sets J
(1)
d , J (1)

ρ and J
(1)
d+1 are disjoint, we conclude that

|J (1)
d | = (e + 1)λd. (18)

Using this partition P (x), we have for the case i = e + 1:

ae+1 = |J (1)
d+1|, be+1 = |J (1)

ρ |, ce+1 = e + 1 + |J (1)
d | = (e + 1)(λd + 1). (19)

Now we fix any v∗ ∈ C(ρ)ρ and any y ∈ Fn of weight ρ−e−1 which is covered

by v∗. We define on J \ supp(v∗) three sets J
(2)
d , J (2)

ρ , and J
(2)
d+1. The set J

(2)
d
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is formed by all vectors c from Cd such that

|supp(c)
⋂

supp(y)| = (e + 1). (20)

The set J (2)
ρ is formed by supp(v) of words v from C(ρ)ρ such that

|supp(v)
⋂

supp(y)| = ρ− e− 1. (21)

The set J
(2)
d+1 is the rest of J \ supp(v∗):

J
(2)
d+1 = J \

(
supp(v∗)

⋃
J

(2)
d

⋃
J (2)

ρ

)
.

The sets J
(2)
d and J (2)

ρ are disjoint. Indeed, if we assume that there is an element

i ∈ J such that

i ∈ J
(2)
d

⋂
J (2)

ρ ,

then we obtain two vectors c ∈ Cd and v ∈ C(ρ)ρ, with e+2 common nonzero

positions, which is impossible. Denote such a partition by P (v∗,y).

Having these sets, we have for the case i = ρ− (e + 1):

aρ−e−1 = |J (2)
d+1|, bρ−e−1 = e + 1 + |J (2)

ρ |, cρ−e−1 = ρ− e− 1 + |J (2)
d |. (22)

By Lemma 7 we should have ae+1 = aρ−e−1, be+1 = cρ−e−1 and ce+1 = bρ−e−1,

which means (using (19) and (22)), that

|J (1)
d+1| = |J (2)

d+1|, |J
(1)
d | = |J (2)

ρ |, and |J (2)
d |+ ρ− e− 1 = |J (1)

ρ |. (23)

Denote `d = |J (1)
d | and `ρ = |J (1)

ρ |. ¿From (18) we have that `d = λd(e + 1).

Denote by W (x) the sphere of radius one with center at x. For z ∈ W (x)

with position i ∈ supp(z) denote by ξd(i) (respectively, by ξρ(i)) the number

of vectors from Cd (respectively, from C(ρ)ρ) covering z. From (18) we deduce

that ξd(i) = 1 for any i ∈ J
(1)
d .

Our first step is to obtain the exact expressions for λρ, ξρ(i), and `ρ. In all

lemmas below the conditions of Theorem 13 are satisfied and ρ ≥ 2e + 2.
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Lemma 14 We have that

λρ =

(
ρ− e− 1

e + 1

)
· λd. (24)

and for any i ∈ J (1)
ρ

ξρ(i) = ξρ =
ρ− e− 1

`ρ

· λρ =

(
ρ− e− 2

e

)
· λd. (25)

PROOF. The partition P (v∗,y) becomes P (v∗ + y) if we shift it by the

vector v∗. Under this shift the roles of C and C(ρ) interchange (indeed, C is

the shift of C(ρ)). The vectors with supports on J
(2)
d ∪ supp(y) will be the

vectors from J (1)
ρ . The vectors ci from J

(2)
d ∪supp(y) corresponds to the vectors

uj of weight ρ − e − 1 on J (1)
ρ . They are exactly the vectors ci, having e + 1

nonzero positions on supp(y). But the number of such vectors is equal to

λρ =

(
ρ− e− 1

e + 1

)
· λd.

Indeed, for any choice of e + 1 positions from ρ − e − 1, there are exactly λd

different vectors ci from Cd, with these fixed e + 1 positions on supp(y) and

the rest e + 1 positions on J
(2)
d . This gives the expression (24) for λρ.

By the arguments above the number ξρ(i) does not depend on i ∈ supp(y) for

chosen y. To find this number, we fix one position on supp(y) and choose the

other e positions from the rest ρ− e− 2 positions by all possible ways:

ξρ(i) =

(
ρ− e− 2

e

)
· λd.

It is clear, that we will have the same expression for ξρ(i), if we choose as v∗ any

other vector v from C(ρ)ρ, covering x. Thus, ξρ(i) is the same (i.e. ξρ(i) = ξρ)

for all i from J (1)
ρ . Counting by two different ways the all number of nonzero

positions of vectors v ∈ C(ρ)ρ, covering x, we obtain that ξρ`ρ = (ρ−e−1)λρ,

which gives (25). 2
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Lemma 15 We have that

`ρ =
(ρ− e− 1)2

e + 1
(26)

and

`ρ ≥ `d + ρ− e− 1. (27)

PROOF. Returning to the proof of the previous lemma, we have that

`ρ =
λρ

ξρ

· (ρ− e− 1).

Now the expression for `ρ follows, if we take into account expressions for λρ

and ξρ from the lemma above.

To prove the inequality we deduce from (23) that `ρ = |J (1)
ρ | = |J (2)

d |+ρ−e−1.

The bound follows now from simple observation that |J (2)
d | ≥ |J (1)

d | = `d

(indeed, in partition P (v∗,y) for any e + 1 fixed nonzero positions of y, we

should have exactly λd disjoint vectors of weight e + 1 on J
(2)
d ). 2

Now we have to consider the cases ρ = 2e + 2 and ρ ≥ 2e + 3 separately. We

start from the case ρ ≥ 2e + 3. In partition P (v∗,y) let zi ∈ W (y∗), i = 1, 2.

Denote by ξ1 (respectively, by ξ2) the number of words from C which are at

distance ρ − e − 2 from z1 (respectively, from z2), where z1 is covered by y

(respectively, z2 has one nonzero position on J
(2)
d ).

Lemma 16 Let ρ ≥ 2e + 3. Then

ξ1 ≥ λd ·
(
ρ− e− 2

e + 1

)
+ 1 (28)

and

ξ2 ≥ λρ ·
e + 1

`ρ − ρ + e + 1
. (29)

18



PROOF. Since wt(z1) = ρ − e − 2, it is at distance ρ − e − 2 from zero

codeword. Now, for any choice of e+1 positions in supp(z1), there are exactly

λd codewords from Cd at the distance ρ − e − 2. There might be also some

codewords from Cd+2 at the same distance from z1, which we can not evaluate.

Hence, we conclude that ξ1 is not less than the expression (28) of the lemma.

Similarly, for the number ξ2, for any ρ−e−1 nonzero positions of y, there are

exactly λd codewords from Cd where each has exactly e + 1 nonzero positions

on J
(2)
d . We can lower bound the number ξ2 taking average contribution of

these codewords from Cd to one position of J
(2)
d . This gives the following lower

bound (again we do not know the number of possible codewords from Cd+2):

ξ2 ≥ λd ·
(
ρ− e− 1

e + 1

)
· e + 1

|J (2)
d |

.

But by (23)

|J (2)
d |+ ρ− e− 1 = |J (1)

ρ |.

Recalling that |J (1)
ρ | = `ρ, we obtain from these two expressions above the

second inequality of the lemma. 2

Now we return to the proof of Theorem 13 for the case ρ ≥ 2e + 3. Consider

the partition P (x). Let z3 ∈ W (x) contain one nonzero position on J (1)
ρ . Then

we know that there are exactly ξρ vectors from C(ρ)ρ at distance ρ−e−2 from

z3, and there are no any vectors from C(ρ) at this distance (see Lemma 14).

But C is completely regular code and, since C(ρ) is a shift of C (Theorem 10),

all these numbers ξρ, ξ1, and ξ2 should be equal. This implies the following

inequality:

max

(
λd ·

(
ρ− e− 2

e + 1

)
+ 1,

(e + 1)λρ

`ρ − ρ + e + 1

)
≤ ξρ. (30)

Consider the first inequality

λd

(
ρ− e− 2

e + 1

)
+ 1 ≤ ξρ.
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which is equivalent to the following one:

λd

(
ρ− e− 2

e + 1

)
< ξρ.

Taking into account (25), the last inequality is reduced to the following one:

`ρ <
(ρ− e− 1)2

ρ− 2e− 2
. (31)

The second inequality

(e + 1)λρ

`ρ − ρ + e + 1
≤ ξρ

implies that

`ρ ≥ (ρ− e− 1)2

ρ− 2e− 2
. (32)

Comparing (31) and (32), we obtain a contradiction. We conclude that for the

case ρ ≥ 2e + 3 there is no such code C, which satisfies to the conditions of

the theorem.

Now we continue the proof of theorem for the case ρ = 2e + 2. Consider the

intersection numbers ai, bi, ci of C for i = ρ/2 = e + 1. As we mentioned

already, by Lemma 7 the intersection numbers aρ−i, bρ−i, c(ρ−i are reversed of

ai, bi, ci, i.e.

bi = cρ−i and ci = bρ−i.

For the case ρ = 2e + 2 and i = e + 1 all these numbers should be equal, since

C(ρ) = C + 1 by Theorem 10, i.e. we should have

be+1 = ce+1.

Using (19), we deduce that `ρ = `d + e + 1. But for the case ρ = 2e + 2, the

expression (26) gives `ρ = e+1, i.e. we obtain that `d = 0, which is impossible,

since J
(1)
d is nonempty. Thus, we obtain a contradiction. Therefore, such code

C with ρ = 2e + 2 can not exist for any e ≥ 1. This means, that if such code

exists it should have ρ ≤ 2e + 1.
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Now combining this with Theorem 10, we conclude that ρ = 2e + 1. Hence

C(ρ)ρ is a (e + 1)-design T (n, 2e + 1, e + 1, λρ) and a constant weight code

with minimum distance 2e + 2, which is possible if and only if λρ = 1. Thus,

C(ρ)ρ is a Steiner system S(n, 2e + 1, e + 1). The theorem is proved. 2

4 On non-antipodal completely regular codes and binary perfect

codes

The next two statements give a characterization of all nontrivial binary non-

antipodal completely regular codes with odd or even minimum distance d.

Theorem 17 Let C be a nontrivial (i.e. |C| > 2) completely regular code

with parameters n, d = 2e + 1 ≥ 3, and ρ. If 0 ∈ C and 1 6∈ C, then C is a

punctured half of perfect code C ′ and

C ′ = C∗ ∪ C∗(ρ),

where C∗ is obtained from C by extension with even parity checking, C∗(ρ)

is the covering set of C∗, and C ′ is a binary perfect code with parameters

n′ = n + 1, d′ = 2e + 1 and ρ′ = e.

PROOF. Let C∗ obtained from C by even parity checking, i.e. it is a code

with d = 2e + 2. From Theorem 12 we have that ρ = 2e. Denote by C∗(ρ)

the covering set of C∗, obtained from C(ρ) by odd parity checking. Then C∗

has covering radius ρ∗ = ρ + 1 = 2e + 1. It is easy to see also that C∗(ρ)

is a shift of C∗ by 1. Define a new code C ′ as a union of C∗ and C∗(ρ). By

definition of covering set the code C ′ has minimum distance d′ = ρ∗ = 2e + 1.

Now we have to show only that this new code has the covering radius ρ′ = e.

The lower bound ρ′ ≥ e is trivial. To see that ρ′ ≤ e, recall the proof of

Theorem 12. As we proved there the union C∗(ρ)ρ+1∪C∗(ρ)ρ form the Steiner
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system S(n + 1, 2e + 1, e + 1). This means that any vector z of weight e + 1

is covered by exactly one vector from S(n + 1, 2e + 1, e + 1), or by C∗(ρ)ρ+1.

This implies that ρ′ ≤ e. Thus ρ′ = e. 2

Theorem 18 Let C be a nontrivial (i.e. |C| > 2) completely regular code with

parameters n, d = 2e + 2 ≥ 4, and ρ. If 0 ∈ C and 1 6∈ C, then C is a half of

perfect code, and C ′,

C ′ = C ∪ C(ρ),

i.e. a union of C and its covering set C(ρ), is a binary perfect code with

parameters n′ = n, d′ = 2e + 1, and ρ′ = e where e = b(d− 1)/2c.

PROOF. By Theorem 13 we have that ρ = 2e + 1. Define a new code C ′

(with minimum distance d′ and covering radius ρ′), taking a union of C and

C(ρ). Since C(ρ) is a shift of C, we deduce that d′ = ρ = 2e + 1.

We claim that C ′ is a perfect code. To have it we have to show that ρ′ = e.

First, it is clear that ρ′ ≥ e (indeed, ρ = 2e+1 and C and C(ρ) are codes with

minimum distance 2e + 2). To see that ρ′ ≤ e, recall the proof of Theorem 13.

In terms of partition P (x), induced by any vector x of weight e + 1, the

inequality ρ′ ≤ e is the same as existence of some v ∈ C(ρ)ρ covering x. But

this follows from the fact that C(ρ)ρ is a (e + 1)-design. Thus, C ′ is a perfect

code, and C is a half of a perfect code. 2

The following example shows that for trivial completely regular codes with

|C| = 1 this last theorem is not valid.

Example 19 Consider a trivial code C, consisting of one vector in Fn, which

is completely regular non-antipodal code with ρ = n. Let C = {(0, 0, ..., 0)} for

n multiple of 4. The intersection array of L looks as follows:

ai = 0, bi = n− i, ci = i, i = 0, 1, ..., n.
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By Theorem 10 above the set C(ρ) is the complementary vector 1 = (1, 1, ..., 1).

The middle row for i = n/2 is symmetric bn/2 = cn/2 = n/2. as it should

be, since to this code we can add the complementary vector (1, 1, ..., 1) and

to obtain a completely regular code again with two codewords and with even

covering radius ρ′ = n/2 (but not perfect code with odd covering radius, how

we have in Theorem 17).

Now we have the following natural question: which half of a perfect code C ′

is a code C? Since 0 does belong to C, it is quite natural to suggest that it

is an even subcode of C ′. The next statement answer this question for known

binary perfect codes, i.e. for codes with Hamming parameters and for the

binary Golay code (since these are the only nontrivial binary perfect codes

[15], [17]).

Theorem 20 Let C be a nontrivial (i.e. |C| > 2) completely regular binary

code with parameters n, d = 2e + 2 ≥ 4, and ρ. Assume that 0 ∈ C, and

1 6∈ C. Then ρ = 2e + 1 and C is the even half part of a perfect code C ′ with

minimum distance d(C ′) = 2e + 1.

PROOF. By Theorem 17 code C is a half of a e-perfect code C ′ and the

minimum distance of C is d = 2e+2. First consider 1-perfect codes (i.e. codes

with d = 3. Let (µ0, µ1, . . . , µn) be the weight distribution of 1-perfect code

C ′ with zero codeword. It is well known that µi 6= 0 for all region from 0 to

n, except i = 1, 2, n − 1, n − 2. The following two properties follow from the

definition of a perfect binary code. For any neighbor sets C ′
i and C ′

i+1 where

i = 3, 4, . . . , n− 4:

(Q.1) for any c ∈ C ′
i there are codewords from C ′

i+1 at distance 3 from c;

(Q.2) for any c ∈ C ′
i+1 there are codewords from C ′

i at distance 3 from c.
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It is clear, that the even half of C ′ is the code C with cardinality |C| = |C ′|/2

and with minimum distance 4, as well as, the rest part C ′′ = C ′ \ C, which is

a shift of C. Now we want to prove that it is the only possibility. Since 0 ∈ C,

we deduce that C can not contain any word from C ′
3. Hence we choose for C

all words from C ′
4. If not, the words which are not chosen will have distance

3 from C ′ (property (Q.2)). But now, since C contains all words from C ′
4, we

can not choose any word from C ′
5 (property (Q.2)). Continuing in this way we

obtain that C contains of all codewords of C ′ of even weight.

For the Golay [23, 12, 7]-code C ′ the proof is similar. 2

Thus, after Theorems 12, 13 and 20, any nontrivial non-antipodal completely

regular code with d ≥ 3 is a half of a perfect code, or is a punctured half of it.

But the only nontrivial binary perfect codes are the binary Golay [23, 12, 7]

code and (n = 2m−1, N = 2n−m, 3) codes with parameters of Hamming codes

[15], [17]. We have, therefore, from the results above the following result.

Theorem 21 Let C be a nontrivial (i.e. |C| > 2) non-antipodal completely

regular binary code with parameters n, d ≥ 3 and ρ. Then there are exactly

four cases:

If d = 2e + 2, then:

1). C is a half of binary perfect Golay code and n = 23, d = 8 and ρ = 7.

2). C is a half of binary perfect code with Hamming parameters, i. e. n =

2m − 1, d = 4, ρ = 3, where m = 3, 4, ... .

If d = 2e + 1, then:

3). C is a punctured half of binary perfect Golay code and n = 22, d = 7 and

ρ = 6.

4). C is a punctured half of binary perfect code with Hamming parameters, i.

e. n = 2m − 2, d = 3, ρ = 2, where m = 3, 4, ... .
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PROOF. Let C be a non-antipodal completely regular code with minimum

distance d. If d = 2e + 1, then by Theorem 12 we deduce that ρ = 2e, and

by Theorem 17, we obtain that C∗ is a punctured half of a perfect code. In

particular, by Theorem 20, we see that the code C∗ (obtained by extension of

C) with zero word is the even part of perfect code. This means that original

code C is either the shortened half of the Golay [23, 12, 7] code, i.e. the case

3), or the punctured halves of the perfect codes with Hamming parameters,

i.e. the case 4), found in [14].

If C has d = 2e+2, by Theorem 13 we deduce that ρ = 2e+1, and by Theorem

18, we obtain that C∗ is a half of perfect code. In this case we obtain, either

a half of Golay code, i.e. the case 1), or halves of binary perfect codes with

Hamming parameters, i.e. the case 2). 2

Now taking halves and punctured halves of known binary perfect codes, we

obtain new completely regular, completely transitive, and uniformly packed

in the sense of [1].

Corollary 22 [4] Let G′ be a binary perfect Golay [23, 12, 7]-code. Denote by

G its subcode, formed by all codewords of even (respectively, odd) weight. Then:

(i) G is a completely regular (23, 211, 8)-code with ρ = 7 and intersection array

(23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23).

(ii) G is a completely transitive code.

(iii) G is a uniformly packed code in the sense of [1] with parameters αi,

i = 0, 1, ..., 7:

α0 = 1, α1 = 7
23

, α2 = 3
11

, α3 = 179
7·11·23 ,

α4 = 29
5·7·11

, α5 = 47
7·11·23 , α6 = 1

7·11 , α7 = 1
11·23 .

Corollary 23 [4] Let G′ be a binary perfect Golay [23, 12, 7]-code. Denote by
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G its subcode, formed by all codewords of even (respectively, odd) weight and

by G(1) the code, obtained by puncturing one position of G. Then:

(i) G(1) is a completely regular (22, 211, 7)-code with ρ = 6 and intersection

array

(22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22).

(ii) G(1) is a completely transitive code.

(iii) G(1) is a uniformly packed code in the sense of [1] with parameters αi,

i = 0, 1, ..., 6:

α0 = 1, α1 = α2 = 3
11

,

α3 = α4 = 29
5·7·11 , α5 = α6 = 1

7·11 .

We remark that the code G(1) is also uniformly packed of order 3 in the sense

of [8].

Corollary 24 [4] Let H ′ be a binary 1-perfect code of length n = 2m − 1 ≥ 7.

Denote by H its even (respectively, odd) subcode. Then:

(i) H is completely regular with covering radius ρ = 3 and with intersection

array (n, n− 1, 1; 1, n− 1, n).

(ii) H is uniformly packed in the wide sense, i.e. in the sense of [1] with

parameters αi:

α0 = 1, α1 =
3

n
, α2 =

2

n− 1
, α3 =

6

n(n− 1)
.

(iii) If H ′ is completely transitive, then H is completely transitive also.

Corollary 25 [14] Let H ′ be a binary 1-perfect code of length n = 2m−1 ≥ 7.

Denote by H its even (respectively, odd) subcode and by H(1) the code, obtained

by puncturing one position of H. Then:

(i) H(1) is completely regular with covering radius ρ = 2 and with intersection

array (n− 1, 1; 1, n− 1).
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(ii) H(1) is uniformly packed in the narrow sense, i.e. in the sense of [14] with

parameters α0 = 1 and α1 = α2 = 2/(n− 1).
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