Rank and Kernel of binary Hadamard codes.
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Abstract—In this paper the rank and the dimension of The elements of a code are calleddewordsand d is

the kernel for (binary) Hadamard codes of |ength a power Ca”ed m|n|mum dlstanceA 1_perfect COd@ Of Iength

of two are studied. In general, it is well-known (see [1]) that n is a subset oF", with distancel = 3, such that all the

the rank of a Hadamard code of lengthn = 2* is a value in

(t+1,....n/2}. In the present paper, the range of possible vectors inF™ are within distance one from a codeword.

values for the dimension of the kernel is computed and a FOr anyt¢ > 1 there exists exactly one linear 1-perfect
construction of Hadamard codes of lengthn = 2¢ for each  code of length2? — 1, up to isomorphism, which is the
one of these values is given. Lower and upper bounds for \ye||-known Hamming code An extended codef the

the rank and dimension of the kernel of a Hadamard code . . . .
codeC is a code resulting from adding an overall parity

of length n = 2¢, are also established. Finally, we construct heck dig H cod 4
Hadamard codes for all possible ranks and dimension of check digit to each codeword @f.
kernels between these bounds. Two codesC, C; € F™ are equivalentif there exists

n 1 J—
Index Terms—Hadamard matrices, Hadamard codes, a vectora € I and a permutationr such thatC =

extended perfect codes, rank, kernel. {a+m(c) | ¢ € C1}. Two structural properties of non-

linear codes are the rank and kernel. Taek of a binary
I. INTRODUCTION codeC, r = rank(C), is simply the dimension of the
Let F* denote the set of all binary vectors of lengtin®ar span ofC. By the binary orthogonal code of the
n. The Hamming distance between two vecters € non-linear code”, denoted byC*, we mean the dual of
F*, denoted byd(z,y), is the number of coordinatesth® Subspace spanned 6yhaving dimensiom —r. The
in which = andy differ. The Hamming weight of: is X€rnelof a binary codeC’ is defined ask (C') = {z €
given bywt(z) = d(z, 0), whereQ is the all-zero vector. I | # +C = C}. If the zero word is inC, then K (C)
The support of a vector € F” is the set of nonzero is a linear subspace @. In general,C' can be written
coordinate positions af and is denoted byupp(z). as the union of cosets df (C) and K(C) is the largest

A (binary) (n, M, d)-codeis a subset(, of F* such such linear code for which this is true (see [2]). We will

that |C| = M andd(cy, cz) > d for all pairscy, e € C. denote the dimension of the kernel@fby k& = ker(C).
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and the transpose of any Hadamard matf,is also a If we consider non-linear extended (binary) 1-perfect
Hadamard matrix, which is not necessary equivalent twdes, then Hadamard matrices [6] can be constructed by
H. We know that if a Hadamard matrik of ordern using the codewords of th&,-dual code corresponding
exists, them is 1, 2 or a multiple of 4 (see [5], [7]). to an extended-perfectZ,-linear code. A more general
Two Hadamard matrices arequivalentif one can construction can be found in [3] where additive codes
be obtained from the other by permuting rows and/@re used and not onlg,-linear ones. In all these cases,
columns and multiplying rows and/or columns byl. the Hadamard matrices have order a powe?2.0i [8],
We can change the first row and columniéfinto +1's [9] we computed the rank and the dimension of the
and we obtain an equivalent Hadamard matrix which kernel for additive Hadamard codes, using the fact that
called normalized they are the additive dual of extended 1-perfect additive
From now on, we will usé{’ to denote a normalized (Z4-linear and nor#,-linear) codes. Moreover, for the
Hadamard matrix of ordet. If +1's are replaced by 0's admissible values, k of these two parameters, the codes
and—1's by 1's, H' is changed into &inary) Hadamard are unique up to equivalence.
matrix ¢(H'). Since the rows off’ are orthogonal, any
two rows ofc(H’) agree inn/2 places and differ im /2

In this paper we will focus on the rank and the kernel

places, and so have Hamming distang€ apart. The of hinary Hadamard codes of length= 2¢. The paper is

binary (n, 2n, n/2)-code consisting of the rows ot ')  arranged as follows. In section 2, we give some results on

and their complements is called (ainary) Hadamard e rank and the kernel of Hadamard codes constructed

code(see [7]) and we will usé{ to denote it. using the Kronecker product. In section 3, we establish

general lower and upper bounds on the dimension of the

The simplest example of a Hadamard matrix is givelﬁernel as well as the rank. We establish that Hadamard
by considering the binary dual code of an extendetPdes of lengthn = 2° with a kernel of dimensiork,
(binary) Hamming code. For example, the dual of theXist if and only if & € {1,2,...,¢ —1,¢ + 1}. We

extended (binary) Hamming code of length that is, also include an argument for the existence of Hadamard

1111 codes of lengtm = 2! for any possible rank; € {t +
the linear code with generator matrjx o o0 1 1 ) )
0 1 o0 1 1,...,n/2}. In section 4, we establish upper and lower
is @ Hadamard codé/. In this case, bounds on the parametersk. Finally, in section 5, we
00 0 0
o 0 1 1 construct Hadamard codes with parameters for all
01 0 1 00 0 0 possible values that satisfy the bounds of section 4.
11 11
H=| "’ 0 c(H') = 00 and
11 11 0 1 0 1 Il. KRONECKER PRODUCT CONSTRUCTION
11 0 0 01 1 0 . .
L0 1 o0 Apart from the Hadamard matrices obtained from ad-
1 0 0 1 ditive dual codes of the corresponding additive extended
L 1-perfect codes, we can consider other Hadamard matri-
11 - -
H' = L~ ces constructed using a standard method Kituaecker
1 - - 1 product construction That is, if H' = (hy;) is any
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TABLE |

KRONECKER PRODUCT CONSTRUCTION

h11B1  hi12B1 -+ hipBi
h21B2  h22B2 -+ hapBa
H’®[B17BQ7"'7B"] =
n x n Hadamard matrix, and3y, Bs, ..., B, are any Proof: The rank of the tensor or Kronecker product

k x k Hadamard matrices, then the matrix in Table | isf real matrices is well-known to be the product of

ank x nk Hadamard matrix. the ranks but this is not true of the Hadamard matrices
If By = B, = --- = B, = B, we write H' ® derived from such a product. Let: {1,—-1} — {0,1}
[B1,Bs,...,B,] = H ® B (see [1]). be the mapping that converts a Hadamard matrix to a

11 binary matrix. LetA’, B’ be Hadamard matrices with
Let S be the Hadamard matri . Starting .
1 -1 row vectorsa;, b; respectively. Then the rows of ® B’

from a Hadamard matrixs, we can recursively define
Sy for t > 1, taking Sy = S ® [Si—1,5t-1] = S ®
S,_1. Taking Sy = (1), the corresponding succession pla; @ b;) = pla; ® 1) + p(1 ® b;)

S1, So, Ss, ..., S;, ... gives us Hadamard matrices ofI

area; ® b; and

t is straight-forward to see that the binary rank of the

all orders which are powers of two. These are Ca”eﬂ'oduct isrank(A) + rank(B) — 1. The dimension of

Sylvestematrices. It is known that the binary codes O{he kernel of the corresponding code follows in similar

these Hadamard matrices,, are the binary dual of the fashion since the kernel is the Kronecker product of the

extended Hamming codes. matrices for the respective kernels.

. / 1
For lengthn = 16, we know that there exist exactly Corollary 2.2: Let 1" be a Hadamard matrix and

5 non-equivalent Hadamard codes (see [1, p.266]). Of its Hadamard code. The kernel dimension of the

of these is the linear Hadamard code with rank argPresponding Hadamard code $f H' is ker(H) +1

dimension of the kernel equal t6, and four more and the rank is-ank(H) + 1.

with each one of the parametersafk(H), ker(H)) Proof: Follows directly from the previous lemma.
€ {(6,3),(7,2),(8,2),(8,1)}. In this case, all non- Specifically, assumé’ is the Hadamard code &f® H'.

equivalent Hadamard codes can be completely classifig@de ¢ consists of all vectors(y,y), (v.9). (¥,y),
using the rank and the dimension of the kernel. (9,9), wherey € H' andy means the complementary

vector ofy, sorank(C) = rank(H) + 1.
Lemma 2.1:Let H{, H) be two Hadamard matrices; g easy to see that the kernel ¢f is K(C)

and H,, H, the respective Hadamard codes. The kernﬂx @), (2, %), (7, 2), (7,7) | © € K(H)}, soker(C) =

of the corresponding Hadamard code /#f @ H) has ker(H) +1. 1
dimension ker(H;) + ker(Hs) — 1 and the rank is
rank(Hy) + rank(Hsz) — 1. The next result is well-known and could be reformu-
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lated in the following way: the binary expansion aof — i. For example,

Lemma 2.3:[1] Let H; ,H) be two Hadamard ma- v, = (1,1,...,1,0,0,...,0),
——— ——

trices andH;, H» theirs Hadamard codes. The rank of n/2 n/2

the corresponding Hadamard code $f» [H}, H}] is ve = (1,1,...,1,0,0,...,0,1,1,...,1,0,0,...,0), (1)
——— N e — N —

rank(Hy) + rank(Hz) + 1 — dim(<H;> N <Hy>) or, n/4 n/4 n/4 n/4

equivalently,dim(<H; U Ha>) + 1. etc.

Note that this last result coincides with Corollary 2.2 Note, however, that if a Hadamard codé has
when H{ = Hj,. ker(H) = k, we can always assume that the kernel is

Lemma 2.4:Let H;, H} be two Hadamard matrices.generatecj by: independent vectors frorf.

Let H,, H, be their Hadamard codes anl (H;),

K (H>) their kemels. If for allv, Hy # v + Hy, then IIl. DIMENSION OF THE KERNEL AND RANK OF

the kernel K of the corresponding Hadamard code of HADAMARD CODES

S®[H{,H}is K ={(z,z) | x € K(H1) N K(H>2)}. The next propositions give us general lower and upper

Proof: Itis clear that{(z, z) | = € K(Hy)NK (Hz)} C bounds for the dimension of the kernel and for the

K. If (z,y) € K, then for allh € H; we have(z+h, y+
h) € (Hy, Hy) or (z + h,y + h) € (Hz, H2), So either

rank, separately. We will prove that the bounds on each
of these parameters are tight and that it is possible to

x = yorz = g, wherej means the complementaryconStrUCt Hadamard codes for every rank and codes for

vector ofy and 7T = {g|y € H}. every dimension of the kernel between these bounds,

using the previous results about the Kronecker product
Assumez = y. Then for allh € H; we will always

have (x + h,y + h) € (Hy,H;) and for allh € Hs,
(x + h,y +h) € (Hy, Hy), sox € K(Hy) N K(Hs).

construction.
Proposition 3.1:If a Hadamard code of length =
2t t > 4, has a kernel of dimensiof, then & €
Assume now thatr = g. Then for allh € H; we {1,2,...t—1,t+1}.
will always have(z + h,y + h) € (Hz, H2) and for all  pyoof: |n a Hadamard codéd, the kernel has dimension
h € Hy, (z+h,y+h) € (Hy, Hy). But this contradicts 4t east1, since the complement of any codeword is in
the condition, H, # v + H,, hence our assumption, e code. It is clear that the maximumtis- 1, when the
x =y is not possible and lemma follows Hadamard code is a linear code. There can not exist any
Hadamard code witker(H) = ¢ since, in that case, the
code would be lineara
It is an open problem to decide if it is always true Proposition 3.2:For all ¢ > 4, there exists a
that S, C< H > for any Hadamard codé/ of length Hadamard code of length = 2! with kernel of dimen-
2¢, whereS; means the linear Hadamard code of lengtsion & if and only if k € {1,2,...,t —1,¢t+ 1}.
2¢. As usual, we can assums, is generated by the Proof: By Proposition 3.1, any Hadamard code of length
binary vectorsl, vy, v, ..., v; of length 2¢, where the n = 2!,¢ > 4, has kernel of dimensiobh € {1,2,...,t—

j-th coordinate ofv; is 1 if and only if 2¢=7 occurs in 1,¢+ 1}.
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We know that the result is true fer = 16. Suppose it wu,_;, is independent from< K >. Hence the rank of
is true forn = 2¢, so there exists a Hadamard cole the corresponding Hadamard code $f® [K’, L}] is
with kernel of dimensioni foralli € {1,...,t—1}. We dim(<K UL>)+1=r+2.
want to construct Hadamard codes of lengtt! with We can continue in this way taking, = mo 2(L}) the
kernels of dimensionél, 2, ..., t}. By Corollary 2.2, the matrix formed by switching columns andn —2 in L7,
corresponding Hadamard code §f® H] has a kernel w2 = (n—2,n) or, equivalently, by a cyclic shift!, =
of dimensioni + 1. By Lemma 2.4, the corresponding(n,n — 1,n — 2)K’. The independent vectors K U
Hadamard code of ® [H{,Hﬂ for any j # 1 has a Lz> include those ir and, moreover, vectors,._; , =
kernel of dimension 1.1 (0...,0,1,1) andu,_3, = (0...,0,1,0,1) which are
Lemma 3.3:Let H' be a Hadamard matrix of orderindependent from< K > by Lemma 3.3. There exist
n > 8 and H its Hadamard code. The minimum weighisome vectors in< K> with different values in the last
in the linear spancH> is greater or equal to four. three coordinates (e.g¢z, 001), (z,010), (z, 100)), such
Proof: The minimum weight ind -+ is at least 3, since that adding pairwise these vectors to the corresponding
H does not contain equal columns. &8 C H*, we vectors inL, we find vectorsu,_ , andu,._s,,.. So, the
have that< H >C H+ and the weight of the vectorsrank of the corresponding Hadamard cod&af[K’, L))
in H is even. So, the the minimum weight inH> is is dim(<K U Ly>)+1=1r+ 3.
greater or equal to fours In the same way, we can form matricds, =
Proposition 3.4:For all ¢ > 4, there exists a m;(L}_;) or equivalently by taking cyclic shiftf] =
Hadamard code of length = 2! with rank(H) = r (n,n—1,...,n—i)K’, ofi+1 < r independent columns
ifand only if r € {t +1,...,n/2}. in K'. Hence if you assume we have a Hadamard code of
Proof: In [1], it is shown thatr < n/2 andr >t + 1. lengthn/2 =2"! and rankr € {t,t+1,--- ,n/4} we
Now, we will see that we can construct a Hadamard codan construct new Hadamard codes of twice the length
for each possible rank between these bounds. n = 2% and rank fromr + 1 to 2r which, in general,
Let K’ be a Hadamard matrix of order and K its gives us Hadamard codes of rank fram- 1 to n/2.
Hadamard code withrank(K) = r and such that the We know that for lengthn = 16 there exist non-
(last) » column vectors of' are the independent onesequivalent Hadamard codd$ of all possible ranks, so
We will see how to construct Hadamard matrices of ordennk(H) = r € {5,6,7,8}. Hence, starting from one
2n with different ranks. of these Hadamard codes and using the above arguments
First, the rank of the corresponding Hadamard codee can construct Hadamard codes of lengttand rank
of S® K’ is r + 1, by Corollary 2.2. Now, consider from 6 to 16, and recursively for any length = 2°

L} = mp,1(K') the matrix formed by switching columns(t > 4). 1

nandn — 1 in K', (ie. ;o1 = (n — 1,n)) and

let L, be its Hadamard code. The independent vectorlél' BOUNDS ON THE RANK AND THE DIMENSION OF

in < K U Ly > include those inK as well as, the THE KERNEL

vector u,—_1, = (0,...,0,1,1) = (z,01) + (x, 10) for In this section we will give an upper and lower bound

some(z,01) € K and (z,10) € L;. By Lemma 3.3, on the rank, in terms of the dimension of the kernel.
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Proposition 4.1: A non-linear Hadamard code ofProof: Let.S; denote the linear Hadamard code of length

lengthn = 2¢ (¢t > 4) with rank » and a kernel of n = 2! generated by wordd,vy,vs,...,v; (t > 5).
dimensionk satisfies Consider the sub-codds;s =<1,v1,v9> and K3y =<
otI=k L1 if 3<k<t—1 1,v3,v4> of S;. DefineHy5 = (S \ (K12+v5))U(K12+

= ot—1 if 1<k<2 v1v2 +vs5). Then from Lemma 4.2, is a Hadamard

Proof: Let H be a Hadamard code of length= 2" code of rankt + 2 having kernelK, of dimension3.
with rank » and a kernel of dimensioh. We know that Now defineH = (Hys\ (K34 +v1))U (K34 +v3v4 +01).
K(H) is the largest linear subspace i such thatd ~ The claim is thatH is a Hadamard code of rarik+ 3
can be written as the union of cosets/éf H) and that with a kernel of dimensior (the intersection of;,
the cosets ofK (/) form a partition of H. There are and K34). To prove that the minimum distance between
21417k cosets inH. When each coset has an independegbdewords is2!~ it suffices to show that this is the
vector, the rank is maximum, so < 2*'=% 4k — 1. minimum weight for the words of type,vs + v3vs + ¥y
This same argument was used in [10] for 1-perfect codasr any y € Sy\ <1,v1,vq,v3,v4>, but the proof is
Fork=1andk =2, 2'*'"F 4k —1> 21 but by straightforward using arguments similar to those in the
Proposition 3.4 we know that < n/2 = 2!, so in previous Lemma 4.21
these two cases the upper boun@is!. 1

Lemma 4.2:There exist Hadamard codes of length Next lemma is a generalization to non-linear
n = 2! (¢t > 4), rankt + 2 having a kernel of dimension Hadamard codes of a Perseval equation (see [7, Corol-
3. lary 3, page 416]) for the linear case.
Proof: Let.S; denote the linear Hadamard code of length Lemma 4.4:Let H be a Hadamard code of length
n = 2' generated by wordg, vy, vs,...,v;. Consider n = 2¢, 0 # s € Z5 and S = supp(s). Then |S|? —
the sub-code =<1, v1,v2> of S;. DefineH = (S, \ 2/S|+2>", z7 = 0, where the sum is extended to all
(K + w)) U (K + vivg +w) for w € Sy \ K. Then the vectorsh € H of weight 2:~! and z, is such that
H is a Hadamard code of rank+ 2 having kernelK  |supp(s) N supp(h)| = |S|/2 £ xp,.
of dimension3. To prove that the minimum distanceProof: Consider a vectors € Z5 and compute
between codewords &~ it suffices to show that this S~ |supp(s) N supp(h)|*> extended to all the vectors

is the minimum weight for the words of typgvs +y 1 € H of weight 2t

foranyy € S; \ K. Assumevivy = (11...1,00...0),  We will use y(a) which is either one or zero de-
where the ones cover the firs{4 coordinates ang = pending on whether belongs or it does not belong to
(1 ,%) € St \ K. Theny+vive = (y1 +11...1,y0) supp(h).

andyvivz = ((y1 ,00...0), sothe weight of is2°". | et 5 c S andh € H of weight2:—1. Then:

Thusy; + 11...1 also has weigh®!—3 andy + v,vo

o > |supp(s) N supp(h)* =
has weight2:=t. 1 -

Lemma 4.3:There exist Hadamard codes of length _ Z (Z 2 _ — (2
= xn(a))” = Z ZZXh(a)Xh(b) =
n =2t (t > 4), rankt + 3 having a kernel of dimension h  a€S a€SbeS h

1. =1512" = 1) +IS1(IS] - (2"~ — 1)
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In the right hand side the result comes from tBe-1)  vectors (the vector and its complement) such that 0
words in H which containa € S and the(2!=! — 1) andz; < |S|/2. Then, from equation (3):
through a paim,b € S. 0=[S|>=2!S|+2>, a7 < |S|2—2S]+4(|S]/2)?,

In the left hand side the value dfupp(s) N supp(h)| s02!|S| < 2|S|* and2!~! < |S|, which contradicts the
is exactly|S|/2 or, in general,|supp(s) N supp(h)| = assumption about.
(|S]/2+zp) for x;, < |S|/2 and|supp(s) N supp(h)| = Hence, finally,K has at least two independent vectors
(1S]/2 — ), whereh means the complementary vectomand with the all-one vector the dimension of the kernel
of h. So we can write}", [supp(s) N supp(h)[* = is greater or equal to threal
(1S]/2)?(2** — 2) + >, z7, where the sum)_, is Proposition 4.6: A non-linear Hadamard code of
extended to all the vectors € H of weight 2¢—1. lengthn = 2¢ (¢t > 4) with rank » and a kernel of

Finally, doing some operations, equation (2) could béimensionk fuffills

seen as: - t+2 if 3<k<t-1
r 2>
ISI° =218 + 23 "o =0 © I O L
3 Proof: It is straightforward from the previous lemmas.
1 1

Lemma 4.5:There do not exist Hadamard codes of

. V. HADAMARD CODES WITH A GIVEN PAIR OF
lengthn = 2¢ (¢t > 4), rankt + 2 having a kernel of

. . PARAMETERS(7, k
dimension less thaf. (r, k)

Proof: Lets e<H> is a vector of minimum weight The bounds for, k, the rank and the dimension of the

s ¢ H and letS = supp(s). As above letjsupp(s) N kernel, given in section IV, are tight for = 16 (see [1,

supp(h)| = |S]/2 + ap, for h € H, wt(h) = 2-1. It p.266] and Table Il). Next we will construct Hadamard

follows thatwt(h + s) = 2t=1 + 2z, Since by (3), we codes of lengtth = 2¢ (¢ > 4) with ranks between the

can not have alk;, = 0, we have thatS| < 2t-1. It bounds established in Propositions 4.1 and 4.6, having

follows immediately from this that in fact there have td€Mels of dimensiork.

be at least two words, s’ €< H > having weight less TABLE |l

than2t—1. DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES
The rank of H is t + 2, and the minimum distance OF LENGTHn = 16.

is 2!71, so H + s is disjoint from H and we can write

<H>= H U (H + s). This is true in fact for any word ker(©) | 5 T?k(f) 8

s’ of weight less thar2!~! in < H >. It follows that 5 | *

H+s=H+s or H=H+s+s. Thuss+s' is in the 3 ¥

kernel of H. Let K be the linear sub-code of the kernel i ) :

of H such that the words of weight less thafr! in

<H> are InK + s.
It follows from the above argument thétm (K) > 1. Lemma 5.1:Given a non-linear Hadamard codg

Moreover, if dim(K) = 1, we would have only two of lengthn = 2! (¢ > 4) with rank r and kernel
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of dimensionk, there exist Hadamard codes of lengtltwo (the two independent vectors in the kernel are the

n = 2!+1 with rank r + 1 4+ 6 and kernel of dimension rows ¢’ andc'™).

k+1-0 ¥5e{0,...,k}. From Proposition 4.1 we know there does not exist

Proof: By Corollary 2.2 the corresponding Hadamarény Hadamard code with dimension of the kernel greater
code ofS®H' has rank+1 and kernel of dimensiohA+ than two and rank greater or equal3o-2 + 3. Hence,

1. By the same argument as in the proof of Propositiomhen the rank has these values we conclude that the
3.4, for eachd € {1,...,k} there exists a permutationdimension of the kernel ig. 1

s such that the corresponding Hadamard cod€’cf

S®[H',m5(H")] has rank: + 1 +4. These permutations Apart from the linear Hadamard code, by Lemmas

represent a cyclic shift of + 1 independent columns in 5.1, 5.2 and 5.3, we can construct any Hadamard code

ot . . :
H'. We can choose these columns in the following Waﬁf lengthn = 2° ( > 4) with kernel of dimensiork: and

If 5 =1, 7, is a transposition that fixe& (H) and in 'ankr such that
this case, by Lemma 2.4, the Hadamard cod€ 'dfias 2A+1—-k<r

kernel of dimensiork = k +1 — 1. If § € {2,...,k}, gk L k1 if 3<k<t—1 (4
w5 effectsd — 1 vectors inK(H), soC has kernel of r= gt—1 if 1<k<2

dimensionk — (6 — 1) =k+1—-46. 1 .
( ) + except for the cases when the rankis 201 =% 4k —1

Lemma 5.2:There exist Hadamard codes of Iengtl?or each3 < & < ¢ — 2 and the dimension of the kernel

n = 2¢ (¢ > 4) with kernel of dimension 1 and rank. .
is k or k — 1. For example, in Tables Il and IV, for
r, Vre{2t,...,n/2}.

t =5 andt = 6 respectively, the constructed codes are

Proof: Fort =4t is true. LetH be a Hadamard code .
denoted byx and the exceptions by.

of length2!=!, rank2(¢ — 1) and kernel of dimension 1.

By Lemma 5.1 there exists a Hadamard code of lengthThe next lemmas and propositions settle the remaining
n=2', rank2(t — 1) + 2 = 2t and kernel of dimension cases needed to establish the existence of a Hadamard
1. The result follows using Lemma 2.4 and the samgde for all the admissible pairs, k), wherer is the
argument as in the proof of Proposition 3.8 rank andk the dimension of the kernel.

Lemma 5.3:There exist Hadamard codes of length proposition 5.4: There exists a Hadamard code of
n = 2' (¢t > 4) with kernel of dimension 2 and rank|engthy, = 2t (¢ > 4) with kernel of dimensionk and

r, Vre {272 +3,...,n/2}. rank r for all » such that

Proof: The Hadamard codes considered in Lemma 5.2 ;¢ o <k<t—1 t+2

have a kernel of dimensiochand were constructed using it 1<k<o t43 Sr<2t+l-k ()
the Kronecker product. After a normalization we ca®roof: By Lemma 4.2 there exists a Hadamard code
always assume there exists a columrwith all the with kernel of dimension 3 and rank + 2 and by
coordinates one and, so another columinwith half Lemma 4.3 one with kernel of dimension 1 and rank
the coordinates equal to one and the other half equak- 3. Let H;, H» be Hadamard codes of length 16
to zero. If we take the transposed matrix, we obtainwith » = 7, £k = 2 andr = 8, r = 1 respectively,

new Hadamard code with dimension of the kernel at leastich thatS, C< H; > and Sy C< Hy > (see [1]).
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TABLE Il

DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES OF LENGTHn = 32.

rank(C)

ker(C) | 6 7 8 9 10 11 12 13 14 15 16
6 *
4 *
3 e x x o©
2 e x o© * * * * * *
1 o o * * * * * * *

TABLE IV

DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES OF LENGTHn = 64.

rank(C)
ker(C) |7 8 9 10 11 12 13 ... 17 18 19 20 ... 32
7 *
5 *
4 ° * * o
3 e o * o * * * o
2 . . * * * * o * * *
1 . . . * * * * * * *

Then, forn = 32 the corresponding Hadamard codes Also note that it is not necessary to construct
of S® [S},H{] and S ® [S}, H)] haver = 8, k = 2 Hadamard codes for all these cases. Using the above
andr =9, k = 1 respectively, by Lemmas 2.3 and 2.4lemmas recursively, we only need to consider the cases
Finally, by using induction and Lemma 5.1 it is easy tavhen the dimension of the kernel is= 3 and2 and
prove the statementl the rank isr = 2!=2 + 2 which we will do in the next

proposition.
For example, in Tables Il and IV, fot = 5 and

t = 6 respectively, these codes are denotedeby his Proposition 5.5: There exist Hadamard codes of
last proposition also shows that, once the dimension leingth n = 2! (¢t > 4) with rank r = 2=2 + 2 and
the kernel is fixed, the lower bound for the rank givedimension of the kernet = 3 andk = 2.

by Proposition 4.6 is tight.
Proof: By Lemma 5.3 we know there exists a Hadamard

Note that so far, we know how to construct aodeH of lengthn = 2!=! (¢ > 5) with rank 2!=2 and
Hadamard code of length = 2! (¢ > 4) with a kernel dimension of the kerne?. For ¢ = 5 there also exists
of dimensionk, for any admissible rank except for thea Hadamard code of length = 16 with rank 8 and
cases when the rank is = 2!*1=% 4 k — 1 for each dimension of the kerne?. Using Lemma 5.1 we get a
3 < k <t —2 and the dimension of the kernel isor Hadamard code of length = 2¢ with rank2!=2 +2 and

k— 1. dimension of the kernet = 2.
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The construction of the other code is not so straighg-rank.
forward. Start with a Hadamard codé (which exists  Actually, apart from the linear Hadamard code, by the
by Lemma 5.1) of lengtm = 2! (¢ > 4) with rank results in Section V, we can construct any Hadamard
2!=2 + 1 and dimension of the kern8l Assume (after a code of lengthn = 2¢ (¢ > 4), kernel of dimensiork
coordinate permutation if it is needed) the basis vectoand 2-rankr as long as
for the kernelK (H) are1, vy, v2, as they are defined in t42<r<2tl-k L _1 if 3<k<t—1
equation (1). Lef. be a code whose codewords are thos t4+3<r<ot-l if 1<k<?2
in K andz+v,v, for all z € H\ K. Following the same (7)
argument as in Lemma 4.2 it is easy to prove thas This means that we can get any Hadamard code of length
a Hadamard code. The kernel of this cablés & and 7 = 2° with any possible rank between the lower and
rank(L) = rank(H) + 1 because< L>=<H, v v,>. UPper bounds, given the dimension of the kernel. These
Hence, codeL is a Hadamard code of lengtlh = 2¢ bounds are given by Propositions 4.6 and 4.1.
(t > 4) with rank 2:=2 + 2 and dimension of the kernel In [1], it was mentioned that the linear span of all
k=3.1 Hadamard codes of lengtH investigated by the authors

Finally, we have established the next theorem whic¢Pntained as a sub-code the linear Hadamard code. This

summarizes all the results in this section. was found to be true of the examples investigated as

Theorem 5.6:There exist Hadamard codes of lengtfpart of the present research. It would be interesting to
n = 2¢ (t > 4) with kernel of dimensiork and rankr establish whether this was always true. Such a result
for all » such that would simplify a number of the arguments in this paper.

t+2<pr<oti-k Ll 1 if 3<k<t—1 Other possible lines for future research, on Hadamard

t43<r<ot-l i 1<k<2 codes, could be to further analyze the relationship be-

(6) tween the dimension of the kernel and theanks in
order to obtain the possibleranks for a given kernel.
VI. CONCLUSIONS
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