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Rank and Kernel of binary Hadamard codes.
K.T. Phelps, J. Rif̀a Senior Member IEEE,M. Villanueva

Abstract— In this paper the rank and the dimension of

the kernel for (binary) Hadamard codes of length a power

of two are studied. In general, it is well-known (see [1]) that

the rank of a Hadamard code of lengthn = 2t is a value in

{t+1, . . . , n/2}. In the present paper, the range of possible

values for the dimension of the kernel is computed and a

construction of Hadamard codes of lengthn = 2t for each

one of these values is given. Lower and upper bounds for

the rank and dimension of the kernel of a Hadamard code

of length n = 2t, are also established. Finally, we construct

Hadamard codes for all possible ranks and dimension of

kernels between these bounds.

Index Terms— Hadamard matrices, Hadamard codes,

extended perfect codes, rank, kernel.

I. I NTRODUCTION

Let Fn denote the set of all binary vectors of length

n. The Hamming distance between two vectorsx, y ∈

Fn, denoted byd(x, y), is the number of coordinates

in which x and y differ. The Hamming weight ofx is

given bywt(x) = d(x,0), where0 is the all-zero vector.

The support of a vectorx ∈ Fn is the set of nonzero

coordinate positions ofx and is denoted bysupp(x).

A (binary) (n, M, d)-code is a subset,C, of Fn such

that |C| = M andd(c1, c2) ≥ d for all pairsc1, c2 ∈ C.
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J. Rifà and M. Villanueva are with the Dept. d’Informàtica,
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The elements of a code are calledcodewordsand d is

calledminimum distance. A 1-perfect codeC of length

n is a subset ofFn, with distanced = 3, such that all the

vectors inFn are within distance one from a codeword.

For any t > 1 there exists exactly one linear 1-perfect

code of length2t − 1, up to isomorphism, which is the

well-known Hamming code. An extended codeof the

codeC is a code resulting from adding an overall parity

check digit to each codeword ofC.

Two codesC1, C2 ∈ Fn areequivalentif there exists

a vectora ∈ Fn and a permutationπ such thatC2 =

{a + π(c) | c ∈ C1}. Two structural properties of non-

linear codes are the rank and kernel. Therankof a binary

codeC, r = rank(C), is simply the dimension of the

linear span ofC. By the binary orthogonal code of the

non-linear codeC, denoted byC⊥, we mean the dual of

the subspace spanned byC having dimensionn−r. The

kernel of a binary codeC is defined asK(C) = {x ∈

Fn | x + C = C}. If the zero word is inC, thenK(C)

is a linear subspace ofC. In general,C can be written

as the union of cosets ofK(C) andK(C) is the largest

such linear code for which this is true (see [2]). We will

denote the dimension of the kernel ofC by k = ker(C).

A Hadamard matrixH of ordern is ann×n matrix

of +1’s and −1’s such thatHHT = nI, where I

is the n × n identity matrix. In other words, the real

inner product of any row with itself isn and distinct

rows are orthogonal. SincenH−1 = HT , we also have

HT H = nI, thus the columns have the same properties
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and the transpose of any Hadamard matrix,H, is also a

Hadamard matrix, which is not necessary equivalent to

H. We know that if a Hadamard matrixH of order n

exists, thenn is 1, 2 or a multiple of 4 (see [5], [7]).

Two Hadamard matrices areequivalent if one can

be obtained from the other by permuting rows and/or

columns and multiplying rows and/or columns by−1.

We can change the first row and column ofH into +1’s

and we obtain an equivalent Hadamard matrix which is

callednormalized.

From now on, we will useH ′ to denote a normalized

Hadamard matrix of ordern. If +1’s are replaced by 0’s

and−1’s by 1’s,H ′ is changed into a(binary) Hadamard

matrix c(H ′). Since the rows ofH ′ are orthogonal, any

two rows ofc(H ′) agree inn/2 places and differ inn/2

places, and so have Hamming distancen/2 apart. The

binary(n, 2n, n/2)-code consisting of the rows ofc(H ′)

and their complements is called a(binary) Hadamard

code(see [7]) and we will useH to denote it.

The simplest example of a Hadamard matrix is given

by considering the binary dual code of an extended

(binary) Hamming code. For example, the dual of the

extended (binary) Hamming code of length4, that is,

the linear code with generator matrix

0
BB@

1 1 1 1

0 0 1 1

0 1 0 1

1
CCA

is a Hadamard codeH. In this case,

H =

0
BBBBBBBBBBBBBBBB@

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 1 1 1

1 1 0 0

1 0 1 0

1 0 0 1

1
CCCCCCCCCCCCCCCCA

, c(H′) =

0
BBBBB@

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1
CCCCCA

and

H′ =

0
BBBBB@

1 1 1 1

1 1 − −
1 − 1 −
1 − − 1

1
CCCCCA

.

If we consider non-linear extended (binary) 1-perfect

codes, then Hadamard matrices [6] can be constructed by

using the codewords of theZ4-dual code corresponding

to an extended1-perfectZ4-linear code. A more general

construction can be found in [3] where additive codes

are used and not onlyZ4-linear ones. In all these cases,

the Hadamard matrices have order a power of2. In [8],

[9] we computed the rank and the dimension of the

kernel for additive Hadamard codes, using the fact that

they are the additive dual of extended 1-perfect additive

(Z4-linear and non-Z4-linear) codes. Moreover, for the

admissible valuesr, k of these two parameters, the codes

are unique up to equivalence.

In this paper we will focus on the rank and the kernel

of binary Hadamard codes of lengthn = 2t. The paper is

arranged as follows. In section 2, we give some results on

the rank and the kernel of Hadamard codes constructed

using the Kronecker product. In section 3, we establish

general lower and upper bounds on the dimension of the

kernel as well as the rank. We establish that Hadamard

codes of lengthn = 2t with a kernel of dimensionk,

exist if and only if k ∈ {1, 2, . . . , t − 1, t + 1}. We

also include an argument for the existence of Hadamard

codes of lengthn = 2t for any possible rank,r ∈ {t +

1, . . . , n/2}. In section 4, we establish upper and lower

bounds on the parametersr, k. Finally, in section 5, we

construct Hadamard codes with parametersr, k for all

possible values that satisfy the bounds of section 4.

II. K RONECKER PRODUCT CONSTRUCTION

Apart from the Hadamard matrices obtained from ad-

ditive dual codes of the corresponding additive extended

1-perfect codes, we can consider other Hadamard matri-

ces constructed using a standard method, theKronecker

product construction. That is, if H ′ = (hij) is any
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TABLE I

KRONECKER PRODUCT CONSTRUCTION

H′ ⊗ [B1, B2, . . . , Bn] =

0
BBBBBB@

h11B1 h12B1 · · · h1nB1

h21B2 h22B2 · · · h2nB2

...
...

...
...

hn1Bn hn2Bn · · · hnnBn

1
CCCCCCA

n × n Hadamard matrix, andB1, B2, . . . , Bn are any

k × k Hadamard matrices, then the matrix in Table I is

a nk × nk Hadamard matrix.

If B1 = B2 = · · · = Bn = B, we write H ′ ⊗

[B1, B2, . . . , Bn] = H ′ ⊗B (see [1]).

Let S be the Hadamard matrix

0
@ 1 1

1 −1

1
A. Starting

from a Hadamard matrixS0 we can recursively define

St for t ≥ 1, taking St = S ⊗ [St−1, St−1] = S ⊗

St−1. Taking S0 = (1), the corresponding succession

S1, S2, S3, . . ., St, . . . gives us Hadamard matrices of

all orders which are powers of two. These are called

Sylvestermatrices. It is known that the binary codes of

these Hadamard matrices,St, are the binary dual of the

extended Hamming codes.

For lengthn = 16, we know that there exist exactly

5 non-equivalent Hadamard codes (see [1, p.266]). One

of these is the linear Hadamard code with rank and

dimension of the kernel equal to5, and four more

with each one of the parameters (rank(H), ker(H))

∈ {(6, 3), (7, 2), (8, 2), (8, 1)}. In this case, all non-

equivalent Hadamard codes can be completely classified

using the rank and the dimension of the kernel.

Lemma 2.1:Let H ′
1, H ′

2 be two Hadamard matrices

andH1, H2 the respective Hadamard codes. The kernel

of the corresponding Hadamard code ofH ′
1 ⊗ H ′

2 has

dimension ker(H1) + ker(H2) − 1 and the rank is

rank(H1) + rank(H2)− 1.

Proof: The rank of the tensor or Kronecker product

of real matrices is well-known to be the product of

the ranks but this is not true of the Hadamard matrices

derived from such a product. Letρ : {1,−1} → {0, 1}

be the mapping that converts a Hadamard matrix to a

binary matrix. LetA′, B′ be Hadamard matrices with

row vectorsai, bj respectively. Then the rows ofA′⊗B′

areai ⊗ bj and

ρ(ai ⊗ bj) = ρ(ai ⊗ 1) + ρ(1⊗ bj)

It is straight-forward to see that the binary rank of the

product isrank(A) + rank(B) − 1. The dimension of

the kernel of the corresponding code follows in similar

fashion since the kernel is the Kronecker product of the

matrices for the respective kernels.

Corollary 2.2: Let H ′ be a Hadamard matrix and

H its Hadamard code. The kernel dimension of the

corresponding Hadamard code ofS⊗H ′ is ker(H)+1

and the rank isrank(H) + 1.

Proof: Follows directly from the previous lemma.

Specifically, assumeC is the Hadamard code ofS⊗H ′.

Code C consists of all vectors(y, y), (y, ȳ), (ȳ, y),

(ȳ, ȳ), wherey ∈ H ′ and ȳ means the complementary

vector ofy, so rank(C) = rank(H) + 1.

It is easy to see that the kernel ofC is K(C) =

{(x, x), (x, x̄), (x̄, x), (x̄, x̄) | x ∈ K(H)}, soker(C) =

ker(H) + 1.

The next result is well-known and could be reformu-
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lated in the following way:

Lemma 2.3:[1] Let H ′
1 ,H ′

2 be two Hadamard ma-

trices andH1, H2 theirs Hadamard codes. The rank of

the corresponding Hadamard code ofS ⊗ [H ′
1,H

′
2] is

rank(H1) + rank(H2) + 1− dim(<H1> ∩ <H2>) or,

equivalently,dim(<H1 ∪H2>) + 1.

Note that this last result coincides with Corollary 2.2

whenH ′
1 = H ′

2.

Lemma 2.4:Let H ′
1, H ′

2 be two Hadamard matrices.

Let H1, H2 be their Hadamard codes andK(H1),

K(H2) their kernels. If for allv, H1 6= v + H2, then

the kernelK of the corresponding Hadamard code of

S ⊗ [H ′
1,H

′
2] is K = {(x, x) | x ∈ K(H1) ∩K(H2)}.

Proof: It is clear that{(x, x) | x ∈ K(H1)∩K(H2)} ⊆

K. If (x, y) ∈ K, then for allh ∈ H1 we have(x+h, y+

h) ∈ (H1,H1) or (x + h, y + h) ∈ (H2, H̄2), so either

x = y or x = ȳ, where ȳ means the complementary

vector ofy and H̄ = {ȳ | y ∈ H}.

Assumex = y. Then for allh ∈ H1 we will always

have (x + h, y + h) ∈ (H1,H1) and for all h ∈ H2,

(x + h, y + h̄) ∈ (H2, H̄2), so x ∈ K(H1) ∩K(H2).

Assume now thatx = ȳ. Then for all h ∈ H1 we

will always have(x + h, y + h) ∈ (H2, H̄2) and for all

h ∈ H2, (x + h, y + h̄) ∈ (H1,H1). But this contradicts

the condition,H1 6= v + H2, hence our assumption,

x = ȳ is not possible and lemma follows.

It is an open problem to decide if it is always true

that St ⊆<H > for any Hadamard codeH of length

2t, whereSt means the linear Hadamard code of length

2t. As usual, we can assumeSt is generated by the

binary vectors1, v1, v2, . . . , vt of length 2t, where the

j-th coordinate ofvi is 1 if and only if 2t−j occurs in

the binary expansion ofn− i. For example,

v1 = (1, 1, ..., 1︸ ︷︷ ︸
n/2

, 0, 0, ..., 0︸ ︷︷ ︸
n/2

),

v2 = (1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, 0, ..., 0︸ ︷︷ ︸
n/4

, 1, 1, ..., 1︸ ︷︷ ︸
n/4

, 0, 0, ..., 0︸ ︷︷ ︸
n/4

),

etc.

(1)

Note, however, that if a Hadamard codeH has

ker(H) = k, we can always assume that the kernel is

generated byk independent vectors fromSt.

III. D IMENSION OF THE KERNEL AND RANK OF

HADAMARD CODES

The next propositions give us general lower and upper

bounds for the dimension of the kernel and for the

rank, separately. We will prove that the bounds on each

of these parameters are tight and that it is possible to

construct Hadamard codes for every rank and codes for

every dimension of the kernel between these bounds,

using the previous results about the Kronecker product

construction.

Proposition 3.1: If a Hadamard code of lengthn =

2t, t ≥ 4, has a kernel of dimensionk, then k ∈

{1, 2, . . . , t− 1, t + 1}.

Proof: In a Hadamard code,H, the kernel has dimension

at least1, since the complement of any codeword is in

the code. It is clear that the maximum ist+1, when the

Hadamard code is a linear code. There can not exist any

Hadamard code withker(H) = t since, in that case, the

code would be linear.

Proposition 3.2:For all t ≥ 4, there exists a

Hadamard code of lengthn = 2t with kernel of dimen-

sion k if and only if k ∈ {1, 2, . . . , t− 1, t + 1}.

Proof: By Proposition 3.1, any Hadamard code of length

n = 2t, t ≥ 4, has kernel of dimensionk ∈ {1, 2, . . . , t−

1, t + 1}.
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We know that the result is true forn = 16. Suppose it

is true forn = 2t, so there exists a Hadamard codeHi

with kernel of dimensioni for all i ∈ {1, . . . , t−1}. We

want to construct Hadamard codes of length2t+1 with

kernels of dimensions{1, 2, . . . , t}. By Corollary 2.2, the

corresponding Hadamard code ofS ⊗ H ′
i has a kernel

of dimensioni + 1. By Lemma 2.4, the corresponding

Hadamard code ofS ⊗ [H ′
1,H

′
j ] for any j 6= 1 has a

kernel of dimension 1.

Lemma 3.3:Let H ′ be a Hadamard matrix of order

n ≥ 8 andH its Hadamard code. The minimum weight

in the linear span<H> is greater or equal to four.

Proof: The minimum weight inH⊥ is at least 3, since

H does not contain equal columns. AsH ⊂ H⊥, we

have that<H >⊂ H⊥ and the weight of the vectors

in H is even. So, the the minimum weight in<H> is

greater or equal to four.

Proposition 3.4:For all t ≥ 4, there exists a

Hadamard code of lengthn = 2t with rank(H) = r

if and only if r ∈ {t + 1, . . . , n/2}.

Proof: In [1], it is shown thatr ≤ n/2 andr ≥ t + 1.

Now, we will see that we can construct a Hadamard code

for each possible rank between these bounds.

Let K ′ be a Hadamard matrix of ordern and K its

Hadamard code withrank(K) = r and such that the

(last) r column vectors ofK are the independent ones.

We will see how to construct Hadamard matrices of order

2n with different ranks.

First, the rank of the corresponding Hadamard code

of S ⊗ K ′ is r + 1, by Corollary 2.2. Now, consider

L′1 = π0,1(K ′) the matrix formed by switching columns

n and n − 1 in K ′, (i.e. π0,1 = (n − 1, n)) and

let L1 be its Hadamard code. The independent vectors

in < K ∪ L1 > include those inK as well as, the

vector ur−1,r = (0, . . . , 0, 1, 1) = (x, 01) + (x, 10) for

some(x, 01) ∈ K and (x, 10) ∈ L1. By Lemma 3.3,

ur−1,r is independent from<K>. Hence the rank of

the corresponding Hadamard code ofS ⊗ [K ′, L′1] is

dim(<K ∪ L1>) + 1 = r + 2.

We can continue in this way takingL′2 = π0,2(L′1) the

matrix formed by switching columnsn andn−2 in L′1,

π0,2 = (n−2, n) or, equivalently, by a cyclic shiftL′2 =

(n, n− 1, n− 2)K ′. The independent vectors in<K ∪

L2> include those inK and, moreover, vectorsur−1,r =

(0 . . . , 0, 1, 1) andur−2,r = (0 . . . , 0, 1, 0, 1) which are

independent from< K > by Lemma 3.3. There exist

some vectors in<K> with different values in the last

three coordinates (e.g.(x, 001), (x, 010), (x, 100)), such

that adding pairwise these vectors to the corresponding

vectors inL2 we find vectorsur−1,r andur−2,r. So, the

rank of the corresponding Hadamard code ofS⊗[K ′, L′2]

is dim(<K ∪ L2>) + 1 = r + 3.

In the same way, we can form matricesL′i =

π0,i(L′i−1) or equivalently by taking cyclic shiftsL′i =

(n, n−1, . . . , n−i)K ′, of i+1 ≤ r independent columns

in K ′. Hence if you assume we have a Hadamard code of

lengthn/2 = 2t−1 and rankr ∈ {t, t + 1, · · · , n/4} we

can construct new Hadamard codes of twice the length

n = 2t and rank fromr + 1 to 2r which, in general,

gives us Hadamard codes of rank fromt + 1 to n/2.

We know that for lengthn = 16 there exist non-

equivalent Hadamard codesH of all possible ranks, so

rank(H) = r ∈ {5, 6, 7, 8}. Hence, starting from one

of these Hadamard codes and using the above arguments

we can construct Hadamard codes of length32 and rank

from 6 to 16, and recursively for any lengthn = 2t

(t > 4).

IV. B OUNDS ON THE RANK AND THE DIMENSION OF

THE KERNEL

In this section we will give an upper and lower bound

on the rank, in terms of the dimension of the kernel.
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Proposition 4.1:A non-linear Hadamard code of

length n = 2t (t ≥ 4) with rank r and a kernel of

dimensionk satisfies

r ≤

 2t+1−k + k − 1 if 3 ≤ k ≤ t− 1

2t−1 if 1 ≤ k ≤ 2
Proof: Let H be a Hadamard code of lengthn = 2t

with rank r and a kernel of dimensionk. We know that

K(H) is the largest linear subspace inH such thatH

can be written as the union of cosets ofK(H) and that

the cosets ofK(H) form a partition ofH. There are

2t+1−k cosets inH. When each coset has an independent

vector, the rank is maximum, sor ≤ 2t+1−k + k − 1.

This same argument was used in [10] for 1-perfect codes.

For k = 1 andk = 2, 2t+1−k + k − 1 > 2t−1, but by

Proposition 3.4 we know thatr ≤ n/2 = 2t−1, so in

these two cases the upper bound is2t−1.

Lemma 4.2:There exist Hadamard codes of length

n = 2t (t ≥ 4), rank t + 2 having a kernel of dimension

3.

Proof: Let St denote the linear Hadamard code of length

n = 2t generated by words1, v1, v2, . . . , vt. Consider

the sub-codeK =<1, v1, v2> of St. DefineH = (St \

(K + w)) ∪ (K + v1v2 + w) for w ∈ St \ K. Then

H is a Hadamard code of rankt + 2 having kernelK

of dimension3. To prove that the minimum distance

between codewords is2t−1 it suffices to show that this

is the minimum weight for the words of typev1v2 + y

for any y ∈ St \K. Assumev1v2 = (11 . . . 1︸ ︷︷ ︸, 00 . . . 0),

where the ones cover the firstn/4 coordinates andy =

( y1︸︷︷︸, y0) ∈ St \K. Theny +v1v2 = (y1 + 11 . . . 1︸ ︷︷ ︸, y0)

andyv1v2 = ( y1︸︷︷︸, 00 . . . 0), so the weight ofy1 is 2t−3.

Thus y1 + 11 . . . 1 also has weight2t−3 and y + v1v2

has weight2t−1.

Lemma 4.3:There exist Hadamard codes of length

n = 2t (t > 4), rank t + 3 having a kernel of dimension

1.

Proof: Let St denote the linear Hadamard code of length

n = 2t generated by words1, v1, v2, . . . , vt (t ≥ 5).

Consider the sub-codesK12 =<1, v1, v2> andK34 =<

1, v3, v4> of St. DefineH12 = (St\(K12+v5))∪(K12+

v1v2 + v5). Then from Lemma 4.2H12 is a Hadamard

code of rankt + 2 having kernelK12 of dimension3.

Now defineH = (H12\(K34+v1))∪(K34+v3v4+v1).

The claim is thatH is a Hadamard code of rankt+3

with a kernel of dimension1 (the intersection ofK12

andK34). To prove that the minimum distance between

codewords is2t−1 it suffices to show that this is the

minimum weight for the words of typev1v2 + v3v4 + y

for any y ∈ St\ <1, v1, v2, v3, v4 >, but the proof is

straightforward using arguments similar to those in the

previous Lemma 4.2.

Next lemma is a generalization to non-linear

Hadamard codes of a Perseval equation (see [7, Corol-

lary 3, page 416]) for the linear case.

Lemma 4.4:Let H be a Hadamard code of length

n = 2t, 0 6= s ∈ Zn
2 and S = supp(s). Then |S|2 −

2t|S|+ 2
∑

h x2
h = 0, where the sum is extended to all

the vectorsh ∈ H of weight 2t−1 and xh is such that

|supp(s) ∩ supp(h)| = |S|/2± xh.

Proof: Consider a vectors ∈ Zn
2 and compute∑

h |supp(s) ∩ supp(h)|2 extended to all the vectors

h ∈ H of weight 2t−1.

We will use χh(a) which is either one or zero de-

pending on whethera belongs or it does not belong to

supp(h).

Let a, b ∈ S andh ∈ H of weight 2t−1. Then:∑
h

|supp(s) ∩ supp(h)|2 =

=
∑

h

( ∑
a∈S

χh(a)
)2 =

∑
a∈S

∑
b∈S

∑
h

χh(a)χh(b) =

= |S|(2t − 1) + |S| (|S| − 1)(2t−1 − 1)

(2)
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In the right hand side the result comes from the(2t−1)

words in H which containa ∈ S and the(2t−1 − 1)

through a paira, b ∈ S.

In the left hand side the value of|supp(s)∩ supp(h)|

is exactly |S|/2 or, in general,|supp(s) ∩ supp(h)| =

(|S|/2+xh) for xh ≤ |S|/2 and|supp(s)∩supp(h̄)| =

(|S|/2−xh), whereh̄ means the complementary vector

of h. So we can write
∑

h |supp(s) ∩ supp(h)|2 =

(|S|/2)2(2t+1 − 2) +
∑

h x2
h, where the sum

∑
h is

extended to all the vectorsh ∈ H of weight 2t−1.

Finally, doing some operations, equation (2) could be

seen as:

|S|2 − 2t|S|+ 2
∑

h

x2
h = 0 (3)

Lemma 4.5:There do not exist Hadamard codes of

length n = 2t (t ≥ 4), rank t + 2 having a kernel of

dimension less than3.

Proof: Let s ∈<H> is a vector of minimum weight

s 6∈ H and letS = supp(s). As above let|supp(s) ∩

supp(h)| = |S|/2 ± xh, for h ∈ H, wt(h) = 2t−1. It

follows thatwt(h + s) = 2t−1 ± 2xh. Since by (3), we

can not have allxh = 0, we have that|S| < 2t−1. It

follows immediately from this that in fact there have to

be at least two wordss, s′ ∈<H> having weight less

than2t−1.

The rank ofH is t + 2, and the minimum distance

is 2t−1, so H + s is disjoint fromH and we can write

<H>= H ∪ (H + s). This is true in fact for any word

s′ of weight less than2t−1 in <H >. It follows that

H +s = H +s′ or H = H +s+s′. Thuss+s′ is in the

kernel ofH. Let K be the linear sub-code of the kernel

of H such that the words of weight less than2t−1 in

<H> are inK + s.

It follows from the above argument thatdim(K) ≥ 1.

Moreover, if dim(K) = 1, we would have only two

vectors (the vector and its complement) such thatxh 6= 0

andxh ≤ |S|/2. Then, from equation (3):

0 = |S|2−2t|S|+2
∑

h x2
h ≤ |S|2−2t|S|+4(|S|/2)2,

so 2t|S| ≤ 2|S|2 and2t−1 ≤ |S|, which contradicts the

assumption abouts.

Hence, finally,K has at least two independent vectors

and with the all-one vector the dimension of the kernel

is greater or equal to three.

Proposition 4.6:A non-linear Hadamard code of

length n = 2t (t > 4) with rank r and a kernel of

dimensionk fulfills

r ≥

 t + 2 if 3 ≤ k ≤ t− 1

t + 3 if 1 ≤ k ≤ 2
Proof: It is straightforward from the previous lemmas.

V. HADAMARD CODES WITH A GIVEN PAIR OF

PARAMETERS(r, k)

The bounds forr, k, the rank and the dimension of the

kernel, given in section IV, are tight forn = 16 (see [1,

p.266] and Table II). Next we will construct Hadamard

codes of lengthn = 2t (t > 4) with ranks between the

bounds established in Propositions 4.1 and 4.6, having

kernels of dimensionk.

TABLE II

DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES

OF LENGTH n = 16.

rank(C)

ker(C) 5 6 7 8

5 *

3 *

2 * *

1 *

Lemma 5.1:Given a non-linear Hadamard codeH

of length n = 2t (t ≥ 4) with rank r and kernel
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of dimensionk, there exist Hadamard codes of length

n = 2t+1 with rank r + 1 + δ and kernel of dimension

k + 1− δ ∀δ ∈ {0, . . . , k}.

Proof: By Corollary 2.2 the corresponding Hadamard

code ofS⊗H ′ has rankr+1 and kernel of dimensionk+

1. By the same argument as in the proof of Proposition

3.4, for eachδ ∈ {1, . . . , k} there exists a permutation

πδ such that the corresponding Hadamard code ofC =

S⊗ [H ′, πδ(H ′)] has rankr+1+δ. These permutations

represent a cyclic shift ofδ + 1 independent columns in

H ′. We can choose these columns in the following way.

If δ = 1, π1 is a transposition that fixesK(H) and in

this case, by Lemma 2.4, the Hadamard code ofC has

kernel of dimensionk = k + 1 − 1. If δ ∈ {2, . . . , k},

πδ effectsδ − 1 vectors inK(H), so C has kernel of

dimensionk − (δ − 1) = k + 1− δ.

Lemma 5.2:There exist Hadamard codes of length

n = 2t (t ≥ 4) with kernel of dimension 1 and rank

r, ∀r ∈ {2t, . . . , n/2}.

Proof: For t = 4 it is true. LetH be a Hadamard code

of length2t−1, rank2(t−1) and kernel of dimension 1.

By Lemma 5.1 there exists a Hadamard code of length

n = 2t, rank2(t− 1) + 2 = 2t and kernel of dimension

1. The result follows using Lemma 2.4 and the same

argument as in the proof of Proposition 3.4.

Lemma 5.3:There exist Hadamard codes of length

n = 2t (t ≥ 4) with kernel of dimension 2 and rank

r, ∀r ∈ {2t−2 + 3, . . . , n/2}.

Proof: The Hadamard codes considered in Lemma 5.2

have a kernel of dimension1 and were constructed using

the Kronecker product. After a normalization we can

always assume there exists a columnc with all the

coordinates one and, so another columnc′ with half

the coordinates equal to one and the other half equal

to zero. If we take the transposed matrix, we obtain a

new Hadamard code with dimension of the kernel at least

two (the two independent vectors in the kernel are the

rows cT andc′T ).

From Proposition 4.1 we know there does not exist

any Hadamard code with dimension of the kernel greater

than two and rank greater or equal to2t−2 + 3. Hence,

when the rank has these values we conclude that the

dimension of the kernel is2.

Apart from the linear Hadamard code, by Lemmas

5.1, 5.2 and 5.3, we can construct any Hadamard code

of lengthn = 2t (t > 4) with kernel of dimensionk and

rank r such that

2t + 1− k ≤ r

r ≤

 2t+1−k + k − 1 if 3 ≤ k ≤ t− 1

2t−1 if 1 ≤ k ≤ 2

(4)

except for the cases when the rank isr = 2t+1−k +k−1

for each3 ≤ k ≤ t− 2 and the dimension of the kernel

is k or k − 1. For example, in Tables III and IV, for

t = 5 and t = 6 respectively, the constructed codes are

denoted by? and the exceptions by◦.

The next lemmas and propositions settle the remaining

cases needed to establish the existence of a Hadamard

code for all the admissible pairs(r, k), wherer is the

rank andk the dimension of the kernel.

Proposition 5.4:There exists a Hadamard code of

length n = 2t (t > 4) with kernel of dimensionk and

rank r for all r such that

if 3 ≤ k ≤ t− 1 t + 2

if 1 ≤ k ≤ 2 t + 3

 ≤ r ≤ 2t + 1− k (5)

Proof: By Lemma 4.2 there exists a Hadamard code

with kernel of dimension 3 and rankt + 2 and by

Lemma 4.3 one with kernel of dimension 1 and rank

t + 3. Let H1, H2 be Hadamard codes of length 16

with r = 7, k = 2 and r = 8, r = 1 respectively,

such thatS4 ⊆< H1 > and S4 ⊆< H2 > (see [1]).
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TABLE III

DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES OF LENGTHn = 32.

rank(C)

ker(C) 6 7 8 9 10 11 12 13 14 15 16

6 *

4 ?

3 • ? ? ◦
2 • ? ◦ ? ? ? ? ? ?

1 • • ? ? ? ? ? ? ?

TABLE IV

DIMENSION OF THE KERNELS AND RANKS OFHADAMARD CODES OF LENGTHn = 64.

rank(C)

ker(C) 7 8 9 10 11 12 13 . . . 17 18 19 20 . . . 32

7 *

5 ?

4 • ? ? ◦
3 • • ? ◦ ? ? . . . ? ◦
2 • • ? ? ? . . . ? ◦ ? ? . . . ?

1 • • • ? ? . . . ? ? ? ? . . . ?

Then, for n = 32 the corresponding Hadamard codes

of S ⊗ [S′4,H
′
1] and S ⊗ [S′4,H

′
2] have r = 8, k = 2

andr = 9, k = 1 respectively, by Lemmas 2.3 and 2.4.

Finally, by using induction and Lemma 5.1 it is easy to

prove the statement.

For example, in Tables III and IV, fort = 5 and

t = 6 respectively, these codes are denoted by•. This

last proposition also shows that, once the dimension of

the kernel is fixed, the lower bound for the rank given

by Proposition 4.6 is tight.

Note that so far, we know how to construct a

Hadamard code of lengthn = 2t (t ≥ 4) with a kernel

of dimensionk, for any admissible rank except for the

cases when the rank isr = 2t+1−k + k − 1 for each

3 ≤ k ≤ t − 2 and the dimension of the kernel isk or

k − 1.

Also note that it is not necessary to construct

Hadamard codes for all these cases. Using the above

lemmas recursively, we only need to consider the cases

when the dimension of the kernel isk = 3 and 2 and

the rank isr = 2t−2 + 2 which we will do in the next

proposition.

Proposition 5.5:There exist Hadamard codes of

length n = 2t (t > 4) with rank r = 2t−2 + 2 and

dimension of the kernelk = 3 andk = 2.

Proof: By Lemma 5.3 we know there exists a Hadamard

codeH of lengthn = 2t−1 (t > 5) with rank 2t−2 and

dimension of the kernel2. For t = 5 there also exists

a Hadamard code of lengthn = 16 with rank 8 and

dimension of the kernel2. Using Lemma 5.1 we get a

Hadamard code of lengthn = 2t with rank2t−2 +2 and

dimension of the kernelk = 2.
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The construction of the other code is not so straight-

forward. Start with a Hadamard codeH (which exists

by Lemma 5.1) of lengthn = 2t (t > 4) with rank

2t−2 +1 and dimension of the kernel3. Assume (after a

coordinate permutation if it is needed) the basis vectors

for the kernelK(H) are1, v1, v2, as they are defined in

equation (1). LetL be a code whose codewords are those

in K andx+v1v2 for all x ∈ H\K. Following the same

argument as in Lemma 4.2 it is easy to prove thatL is

a Hadamard code. The kernel of this codeL is K and

rank(L) = rank(H) + 1 because<L>=<H, v1v2>.

Hence, codeL is a Hadamard code of lengthn = 2t

(t > 4) with rank 2t−2 + 2 and dimension of the kernel

k = 3.

Finally, we have established the next theorem which

summarizes all the results in this section.

Theorem 5.6:There exist Hadamard codes of length

n = 2t (t > 4) with kernel of dimensionk and rankr

for all r such that t + 2 ≤ r ≤ 2t+1−k + k − 1 if 3 ≤ k ≤ t− 1

t + 3 ≤ r ≤ 2t−1 if 1 ≤ k ≤ 2
(6)

VI. CONCLUSIONS

The p-ranks of Hadamard matrices (or equivalently,

of Hadamard designs), that is the ranks over a field

of characteristicp, have been widely studied (see, for

instance, [1]). These parameters have been sometimes

used to distinguish between non-equivalent Hadamard

matrices, since equivalent ones have the samep-ranks.

In the present paper, for Hadamard matrices of order

a power of two, we studied another parameter, the

dimension of the kernel of its corresponding binary

Hadamard code, together with the 2-rank. We proved

the existence of Hadamard codes of lengthn = 2t for

any possible dimension of the kernel and any possible

2-rank.

Actually, apart from the linear Hadamard code, by the

results in Section V, we can construct any Hadamard

code of lengthn = 2t (t > 4), kernel of dimensionk

and 2-rankr as long as t + 2 ≤ r ≤ 2t+1−k + k − 1 if 3 ≤ k ≤ t− 1

t + 3 ≤ r ≤ 2t−1 if 1 ≤ k ≤ 2
(7)

This means that we can get any Hadamard code of length

n = 2t with any possible rank between the lower and

upper bounds, given the dimension of the kernel. These

bounds are given by Propositions 4.6 and 4.1.

In [1], it was mentioned that the linear span of all

Hadamard codes of length2t investigated by the authors

contained as a sub-code the linear Hadamard code. This

was found to be true of the examples investigated as

part of the present research. It would be interesting to

establish whether this was always true. Such a result

would simplify a number of the arguments in this paper.

Other possible lines for future research, on Hadamard

codes, could be to further analyze the relationship be-

tween the dimension of the kernel and thep-ranks in

order to obtain the possiblep-ranks for a given kernel.
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