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Abstract. Binary 1-perfect codes which give rise to partitions of the n-cube are presented. The
1-perfect partitions are characterized as homomorphic images of simple algebraic structures on Fn

and are constructed starting from a particular case of a structure defined in Fn.
A special property (so-called well-ordering) of STS(n) is given in such a way that for this kind

of STS it is possible to define the algebraic structure we need in Fn and to construct 1-perfect
partitions of the n-cube.

These 1-perfect partitions give us a kind of 1-perfect code for which it is easy to do the coding
and decoding. Furthermore, there exists a syndrome which allows us to perform error correction. We
present systematic codes of length n = 15 and we give examples of how to do the coding, decoding,
and error correction.
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1. Introduction. Let F be the binary finite field GF (2) and consider the n-cube
F n.

A binary code C of length n is a subset of F n. If this subset is a linear subspace of
F n, then C will be a linear code. In any case we will call the vectors in C codewords.

The concept of Hamming distance between two vectors v, w ∈ F n is defined as
the number of coordinates in which they differ. A binary code is a 1-perfect code if
all the vectors in F n are either in C or at distance one from exactly one codeword of
C.

A binary 1-perfect code has length n = 2m − 1, and the linear 1-perfect codes
are unique up to isomorphism (see [4]). The characterization of binary nonlinear
1-perfect codes is not complete. Nonlinear 1-perfect codes were first constructed
by Vasil’ev, and other constructions have been presented subsequently by Mollard,
Phelps, Solov’eva, Bauer, and more recently by Etzion and Vardy (the reader can see
a review of all these constructions in [2]).

Two 1-perfect codes are isomorphic if there exists a permutation of the coordinates
such that the codewords in the first code are converted to the codewords in the second
code.

Two 1-perfect codes are equivalent if there exists a translation such that the
codewords in the first code are converted to the codewords in the second code or
isomorphic to them (see [7]).

In this paper a construction of 1-perfect partitions of F n is proposed, that is,
partitions of the n-cube in 1-perfect codes. The construction is based on Theo-
rems 3.1 and 3.2, which we present in section 3. In particular, within the various
possibilities offered by these theorems, we have opted to use the Steiner loop (Sloop)
structure associated with the well-ordered Steiner triple system (STS).
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In section 2, we present several general characteristics of quasi groups, Sloops,
STSs, and 1-perfect codes.

In section 3 (the main section), we look at Theorems 3.1 and 3.2, which allow the
algebraic construction of 1-perfect partitions and, therefore, of 1-perfect codes. Using
these theorems and the Sloop structure given by possible STSs, we see in Theorem 3.5
that, for a specific type of STS, we can ensure the construction of 1-perfect partitions
of the n-cube.

In section 4, we analyze the well-ordered STSs, and in section 5 we see an example
of how to handle coding, decoding, and error correction using the 1-perfect codes
constructed.

Finally, we present our conclusions in section 6, along with possibilities for future
research on this topic.

2. Sloops, STSs, and 1-perfect codes.
Definition 2.1. Let A,F be two sets. We say that A acts on F by means of · if

there exists a map

F ×A −→ F,
(f, a) −→ f · a.

Definition 2.2. Assume A acts on F by means of · and also on G by means of
∗. An A-homomorphism h : F −→ G is a map compatible with the action of A on F
and on G, that is, a map such that for all a ∈ A, f ∈ F it holds that f ·a = h(f) ∗a.

We are interested in algebraic structures defined on the n-cube F n, and also in
the Hamming distance defined between vectors in F n.

Let An be the set {e0, e1, . . . , en}, where e0 ∈ Fn is the zero vector and ei
(i = 1, 2, . . . , n) are the basis vectors in F n having a one in the ith coordinate and
zeroes elsewhere.

Definition 2.3. A distance-compatible (Hamming distance) action of the set An

on F n is a map

F n ×An → F n,
(v, ei) → v · ei,

such that
• for all v ∈ F n there is a permutation πv of n coordinates such that v · ei =
v + eπv(i);
• for all ei ∈ An the induced map v → v · ei is one-to-one.

For instance, the translation (v, ei) → v + ei is a distance-compatible action of
An on the n-cube.

The following proposition shows us three properties of distance-compatible actions
of An on F n that we will give without proof, because they proceed directly from the
definition.

Proposition 2.4.

1. For all v ∈ F n we have v · ei = v · ej if and only if i = j.
2. For all ei, d(v · ei, v) = 1.
3. The set {a · ei|i = 1..n} is the set of all the vectors in F n at distance one

from a given a ∈ F n.
One of the simplest algebraic structures is that of a quasi group, which we will

use in this paper. Readers interested in quasi groups and related structures can find
more information in [6].
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Definition 2.5. Let A be a finite set. An algebraic structure of a quasi group
consists of A and a binary operation on A defined by the function

∗ : A×A −→ A

such that x ∗ y = x ∗ z and y ∗ x = z ∗ x only if y = z for all x, y, z ∈ A.
Definition 2.6. A quasi group (A, ∗) is called a Sloop if
• there exists 0 ∈ A such that 0 ∗ a = a ∗ 0 = a for all a ∈ A;
• the operation is totally symmetric, that is, any relation a ∗ b = c implies any

other relation obtained by permuting a, b, and c.
Definition 2.7. A Steiner triple system STS(n) is a pair (A,B), where A is

a finite set of n elements and B is a collection of 3-subsets of A, which we will call
blocks, such that every two different elements x, y ∈ A are contained in exactly one
block of B.

• It is easy to see that starting from a Sloop A, we can define an STS on the set
A∗ = A−{0} by taking a set of blocks B = {(x, y, x∗ y) | ∀x, y ∈ A∗, x 6= y}.
• Conversely, starting from an STS(n) = (A∗, B), we can define a Sloop on the

set A = A∗ ∪ {0} = {0, 1, 2, . . . , n} by

A×A −→ A,
(a, b) −→ a ∗ b,

if a 6= b then a ∗ b = c, where (a, b, c) ∈ B,
if a = b then a ∗ b = 0,
if a = 0 then a ∗ b = b,
if b = 0 then a ∗ b = a

• Two STSs (A,B) and (A′, B′) are isomorphic if A = A′ and there exists a
permutation of the elements in A such that the triples in B are converted to
the triples in B′.
If ‖A∗‖ = 15, there are 80 nonisomorphic triples (see [9]).
If ‖A∗‖ = 31, there are ≈ 10200 nonisomorphic triples (see [5]).

Starting from a 1-perfect binary code C ∈ F n (not necessarily linear but such
that 0 ∈ C), we can construct an STS by taking the supports of the codewords of
weight three. Take A∗ = {1, 2, . . . , n} as the set of coordinates, and the set of blocks
as B = {(i, j, k)}, where (i, j, k) are the support of any codeword in C of weight three.
We denote this set by STS0.

Let C be a 1-perfect binary code. Let v ∈ C be a codeword in C. The set of all
w ∈ C at distance three from v is an STSv taking as the set of blocks B the support
of all the vectors v + w (∀w ∈ C | d(w, v) = 3).

Starting from a 1-perfect code C we can obtain different STSs, for instance STS0,
STSv, etc.

An STS can be obtained from a 1-perfect code or not. In the case that the STS
comes from a 1-perfect code, it can be unique or not and, moreover, if there is more
than one 1-perfect code which gives the same STS, they do not need to be isomorphic
nor equivalent.

Phelps (see [7]) constructs several 1-perfect codes in a combinatorial way which
lead to 23 of 80 nonisomorphic STSs of length 15 (these STSs are called “perfect”).
Levan (see [3]) adds 8 codes to the previous list.

In this paper we prove that starting from a well-ordered STS it is possible to
construct a partition of F n in 1-perfect codes such that the given STS is the support
of the minimum-weight codewords. It will remain the same problem when the given
STS is not well ordered.
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3. 1-perfect partitions. In this paper, we are interested in 1-perfect codes
which give rise to partitions of F n in 1-perfect codes, rather than in 1-perfect codes
alone.

We already know that, given any 1-perfect code C of length n, we can always
find a partition of F n generated by this code. For example, the trivial partition
{Ci |Ci = C + ei; ∀ i = 1, . . . , n}, where ei are the different vectors of F n of weight
1 and e0 = (0, 0, . . . , 0), is a partition of F n on 1-perfect codes, that is, a 1-perfect
partition. The above partition is only natural when C is a linear code, that is, in
those cases where C + C = C.

In other 1-perfect codes, another type of partition would be more natural. For
example, in propelinear codes (see [8]), it would be more natural to use the partition
on F n given by {Ci |Ci = C ∗ ei; ∀ i = 1, . . . , n} since, for these codes, C ∗ C = C.

Generally, for 1-perfect codes, there does not exist an operation on F n allowing
a natural partition. There is a gap in the literature on this aspect and this paper
attemps to analyze it.

We begin by assuming that we have F n partitioned into classes, each of which is
a 1-perfect code. In every class other than the class C, which includes the vector 0,
we can take a vector of weight 1 as a representative and, therefore, we can consider
the partition as given by An = {e0, e1, e2, . . . , en}.

Theorem 3.1. Given a 1-perfect partition An on F n it is possible to define a
distance-compatible action of An on F n, such that the given partition can be consid-
ered as a quasi group which is an An-homomorphic image of F n.

Proof. In essence, we assume a 1-perfect partition An and define an operation on
An as follows:

ei ∗ ej = ek,(3.1)

where ek represents the class containing the vector ei + ej . An has a quasi group
structure with this operation, where e0 is the zero element. In fact An has a Sloop
structure.

This operation is not the only one which could be defined on An.
Assuming thatAn has a quasi-group structure, it is important to observe whether

An can be considered as anAn-homomorphic image of F n. For this purpose, we must
have defined an operation on F n or at least an operation between elements of F n and
An (An could be considered a subset of F n).

Given any element c ∈ C, we define c ·ei as the only element of class ei at distance
one from c.

Given any element v ∈ F n, since C is a 1-perfect code, we can always write it
uniquely as v = c · ei, where c ∈ C. We now define an operation F n ×An −→ F n

such that v · ej = w is the only vector of the class ek ∈ An at distance one from v,
where ei ∗ ej = ek.

This operation F n × An meets the conditions of Definition 2.3, so we have a
distance-compatible action of An on F n.

Now we can define

φ : F n −→ An

such that φ(v) = ei if and only if v is in class ei.
If φ(v · ej) = ek, then ei ∗ ej = ek, where φ(v) = ei. Hence φ(v) ∗ φ(ej) = ek and

φ(v · ej) = φ(v) ∗ φ(ej), so φ is an An-homomorphism, which is the identity map on
An.
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Now the inverse: let us assume that we have defined a distance-compatible action
ofAn on F n and also that we have defined a quasi-group structure with a zero element
on An.

With these conditions, we will consider the following theorem.
Theorem 3.2. Let us assume there is an An-homomorphism φ : F n −→ An

which is the identity map on An.
Then, for all ei ∈ An, the sets H = φ−1(ei) ⊂ F n are 1-perfect codes.
Proof. First, we will see that the minimum distance of H is 3.
Suppose d(a, b) = 1, where a, b ∈ H. For some index j, a · ej = b, since all

a · ej are different and we obtain the elements of F n at distance one from a. Hence,
φ(b) = φ(a · ej) = φ(a) ∗ φ(ej) = φ(a) ∗ ej , but φ(a) = φ(b), so e0 = ej , which
contradicts the initial assumption.

Let us now assume d(a, b) = 2, where a, b ∈ H. There will be ei 6= ej such that
a · ei = b · ej . Hence φ(a · ei) = φ(b · ej) and, since φ(a) = φ(b), then φ(ei) = φ(ej)
and, therefore, ei = ej , which is impossible.

Finally, we will see that, given any element v ∈ F n, then either v ∈ H, or there
is a unique element w ∈ H such that d(v, w) = 1.

In essence, let us assume that v /∈ H and φ(H) = ek. Then for any index i,
φ(v) = ei. Since ∀ j ∈ An, j 6= 0, the elements ei ∗ ej ∈ An are all different, there
will be a certain value for which ei ∗ ej = ek. Hence φ(v · ej) = φ(v) ∗ ej = ek and
w = v · ej ∈ H. Moreover, d(v, w) = 1.

Suppose now that there is a w′ ∈ H, w′ 6= w at distance 1 from v. This means
that, for a certain s, we have w′ = v ·es and φ(w′) = ek. Therefore, ei∗es = ek = ei∗ej
and es = ej , contrary to what we assumed.

According to this theorem, our interest lies, therefore, in defining distance-compatible
actions of An on F n for which An is a homomorphic image.

One way to do so is the following.
Fix an order in the set An − {e0}; for instance e1 < e2 < e3 · · · < en.
For x ∈ F n, x = (x1, x2, . . . , xn) define the ordered support of x as sx = ea1 <

ea2 < · · · < ear , where eai ∈ sx if and only if xai = 1.
Given an STS(n) we can define in An = {e0, e1, . . . , en} the Sloop structure as

we stated in Definition 2.7. Hence, if B is the set of blocks of the given STS we have
if ei 6= ej , then ei ∗ ej = ek, where (ei, ej , ek) ∈ B,
if ei = ej , then ei ∗ ej = 0,
if ei = e0, then ei ∗ ej = ej ,
if ej = e0, then ei ∗ ej = ei.

(3.2)

For x ∈ F n define the value φ(x) of x in the following way:

F n
φ−→ An,

x −→ φ(x) = ((· · · ((ea1 ∗ ea2) ∗ ea3) ∗ ea4 ∗ · · ·) ∗ ear ),
(3.3)

where sx = ea1 < ea2 < · · · < ear .
Given c1, c2, . . . , cr, we will write [c1c2 · · · cr] ∈ An to represent the result of the

chain of operations ((· · · ((c1 ∗ c2) ∗ c3) ∗ c4 ∗ · · ·) ∗ cr).
Given a, x, y ∈ An, the equation (a ∗ x) ∗ y = (a ∗ ȳ) ∗ x always has a unique

solution that can be calculated as

ȳ = [axyxa].(3.4)
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For some STS the condition ȳ = y is always true, for example, when we consider
the first STS of the 80 possible STSs of length 15 (we will consider the list of 80 STSs
to be ordered normally, as, for example, in [1]).

Definition 3.3. We will say that an STS is a well-ordered STS if it is possible
to order the elements in An such that ∀ a, x, y ∈ An we have x < y if and only if
x < ȳ, where ȳ = [axyxa].

Lemma 3.4. Let (A∗, B) be a well-ordered STS and let An be the Sloop defined
in (3.2).

Then there is a distance-compatible action of An on F n such that the value map
φ : F n −→ An defined in (3.3) is an An-homomorphism.

Proof. Let x = (x1, x2, . . . , xn) ∈ F n, and let sx = ea1 < ea2 · · · < ear be the
ordered support of x.

Then φ(x) ∗ ei = [ea1ea2 · · · earei] = [ea1ea2 · · · ear−1ei′ear ] = [ea1ea2 · · ·
ear−2ei′′ear−1ear ] = . . ., where ei < ear if and only if ei′ < ear and ei′ < ear−1 if and
only if ei′′ < ear−2 .

The same argument brings us finally to an index j such that φ(x) ∗ ei = [ea1 · · ·
eas−1ejeas · · · ear ], where eas−1 ≤ ej < eas .

Now we define πx(ei) = ej . πx is a permutation of {ei | i = 1..n } that allows us
to define, for all x ∈ F n,

x · ei = x+ ej = x+ πx(ei)

so that An acts on F n and this is a distance-compatible action.
Furthermore, with the given definition, φ(x) ∗ φ(ei) = φ(x+ ej) = φ(x · ei), so φ

is an An-homomorphism.
As a consequence of Theorem 3.2 and Lemma 3.4, we can establish the following

theorem which proves that the well-ordered property of STSs is of interest because it
allows us to start from an STS(n) and efficiently determine when there is a 1-perfect
partition associated with it.

Theorem 3.5. Let (A∗, B) be a well-ordered STS(n) and let An be the Sloop
defined in (3.2).

Then there is a distance-compatible action of An on F n such that the value map
φ : F n −→ An gives us a partition of F n into 1-perfect codes H = φ−1(ei) for all
ei ∈ An.

Starting from a well-ordered STS not only can we assure that An acts in a dis-
tance-compatible way on F n but we can extend the action to all the elements in F n

as we can see in the following proposition.
Proposition 3.6. Let (A∗, B) be a well-ordered STS and let An be the Sloop

defined in (3.2).
Then we can extend the action of An ⊂ F n on F n to an action of F n on F n.
Proof. Given x, y ∈ F n with ordered supports sx = ea1 < ea2 · · · < ear and

sy = eb1 < eb2 < · · · < ebs , respectively, we define x · y by using Lemma 3.4:

x · y = (· · · ((x · eb1) · eb2) · · ·) · ebs .

It is now easy to see that the previous operation is well defined, that is, x · y has a
unique value, so we have an action of F n on F n.

Remark. Proposition 3.6 shows us that the well-ordered condition is stronger than
needed to assure the construction of 1-perfect partitions starting from an STS (see
Theorem 3.2). We will see in the following section that in the specific case n = 15
we can construct 1-perfect partitions starting in 16 STS(15)s, but this result does
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not close the problem of finding all possible STSs which allow the construction of
1-perfect partitions.

A problem we leave open is the construction of distance-compatible actions of
An ⊂ F n on F n that cannot be extended to actions of F n on F n.

4. Well-ordered STSs. We will now consider the STSs which have the well-
ordered property.

In general, if the equality (a ∗ x) ∗ y = (a ∗ y) ∗ x does not hold, we can calculate
ȳ = [axyxa] (see (3.4)) such that (a∗x)∗y = (a∗ ȳ)∗x and, if the STS is well ordered,
we obtain an element ȳ that has the same order relationship with x that y has with
x.

Whenever we vary a ∈ An in (3.4), we obtain n elements, not necessarily different,
that are greater than x if y > x, or less than x if y < x. For all x 6= y, we will use qxy
to designate the set of different elements obtained:

qxy = {ȳ ∈ An|ȳ = [axyxa]|a ∈ An}

The vector (q1, q2, . . . , qn), where qi is the quantity of pairs (x, y) for which |qxy| =
i, will be denoted the characteristic vector of the STS(n) and, when n = 15, it is a
complete invariant for STSs which allows us to distinguish completely nonisomorphic
STS(15)s.

In the appendix, we have listed the 80 vectors which characterize the nonisomor-
phic STS(15)s. We have suppressed the coordinates q8, q9, q10, q11, q12, q13, q14, q15 in
each vector since their value is always zero. Moreover, we have added to each vector
a coordinate q16 which allows us to decide which STS(15)s are well ordered, as we
will see in Proposition 4.1.

There are other invariants which make it possible to distinguish between non-
isomorphic STS(15)s, for example the cycle structure (see [5]), the train (see [5]), and
the fragments (see [3]). We will use the invariant we propose, since it allows us to link
the STS structure with the construction of perfect codes, as we will see later on.

All of the elements in qxy’s have the same order relationship with x that y has
with x.

Let us assume that for certain y, y′, y′′ ∈ A∗n we have some elements α, β, γ ∈ A∗
such that

α, β ∈ qγy,
α, γ ∈ qβy′ ,(4.1)
γ, β ∈ qαy′′ .

We will use q16 to denote the quantity of triples α, β, γ that satisfy (4.1).
Proposition 4.1. The component q16 in the characteristic vector of a well-

ordered STS(n) is zero (see the appendix to see the values of the q16 for all the STSs
of length 15).

Proof. In essence, if q16 6= 0, then there is a α, β, γ triple that fulfills (4.1).
Nevertheless, this is absurd since, if α > β > γ, the second equation fails; if α > γ > β,
the first equation fails, etc. For any assumption, one of the three equations in (4.1)
always fails.

Proposition 4.1 limits the number of STS(15)s for which it is possible to define a
well-ordering that allows to obtain perfect codes. In particular, there are 16 STS(15)s
that can be well ordered and, therefore, produce 1-perfect codes: 1− 10 and 13− 18.
If, for each class of nonisomorphic STS(15)s, we choose as representative the one
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Table 4.1

Well-ordered STSs for n = 15.

STS Ordering
1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
3 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
4 1,2,3,4,5,6,7,8,11,9,10,12,15,13,14
5 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
6 1,2,3,4,5,6,7,8,11,9,10,12,14,13,15
7 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
8 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
9 1,2,3,4,5,6,7,8,14,9,15,10,12,11,13

10 1,2,3,4,5,6,7,8,14,10,12,9,15,11,13
13 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
14 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
15 1,2,3,4,5,6,7,8,11,12,15,9,10,13,14
16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
17 1,2,3,4,5,6,7,8,11,13,14,9,10,12,15
18 1,2,3,4,5,6,7,8,12,9,13,10,14,11,15

given in [1], an example of well-ordering (although not the only one), calculated
computationally, associated with each of these STS(15)s, is the one listed in Table 4.1.

In the specific case n = 15, we have studied the codes constructed using the well-
ordering given in Table 4.1 and calculated re and rn, respectively the outer rank and
dimension of the kernel:

re = min{k|k = dim(E), C ⊂ E, E is a vector space},

rn = dim(E), where E = {x ∈ C|x+ C ⊂ C}.

The results obtained, for the representatives we have chosen from each family, are as
follows:

STS 1 2 3 4 5 6 7 8 9 10 13 14 15 16 17 18
rn 11 9 8 7 8 6 8 7 6 6 6 6 6 8 6 6
re 11 12 13 13 13 13 13 14 14 14 14 14 14 14 14 14

For a given STS, by considering other well-orderings, we can obtain 1-perfect
codes that are neither isomorphic nor equivalent amongst themselves. Thus, for each
STS we obtain a family of 1-perfect codes.

For a given code C, if we consider C + v, where v ∈ C, we obtain another code
equivalent to the first one that does not have to have the same STS(n) associated
with it, or, in other words, the STSvs associated with each of the codewords v ∈ C
do not necessarily have to match (if they match, the code is known as homogeneous).

In general, each of these STS(n)s, together with a well-ordering, will result in a
partition, taking as classes Ci = {x|x ∈ F n, where φ(x) = ei}, where all the classes
are 1-perfect codes (what we have called a 1-perfect partition).

5. Error-correcting, coding, and decoding. With the codes obtained, error-
correcting is very easy. In essence, the codewords are characterized by having a
constant value (the value map is defined in (3.3)). Therefore, when we receive a word,
we can calculate its value and use it as a syndrome to correct errors.

Let us assume a code C defined using a well-ordered STS, which consists of all
the vectors with value ei, C = {v ∈ F n |φ(v) = ei}.
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Table 5.1

Redundant bits for code 17.

φ x10 = 0 x10 = 1
0 0000 0111
1 1001 1110
2 1010 1101
3 1111 1000
4 1100 1011
5 0110 0001
6 0011 0100
7 0101 0010
8 1011 1100
9 0100 0011
10 0111 0000
11 1101 1010
12 0010 0101
13 1110 1001
14 1000 1111
15 0001 0110

Given any vector v ∈ F n, we can compute its syndrome φ(v) and we will have
φ(v) = ei if and only if v ∈ C.

If v /∈ C, we have φ(v) = ek, where ek 6= ei. Let ej be such that ei = ek ∗ ej . Now
we will calculate the only vector w ∈ C at distance one from v as w = v · ej , since
d(v, w) = 1 and φ(w) = φ(v · ej) = φ(v) ∗ ej = ek ∗ ej = ei (see Theorem 3.5).

Concerning coding-decoding, we were unable to show that, for any value of n, the
codes obtained are systematic, although in the specific case n = 15, Table 4.1 gives
systematic codes where the 11 information coordinates are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13
and the 4 redundant coordinates are 11, 12, 14, 15 (after the well-ordering).

We have not included the proof that the codes in Table 4.1 are systematic since
it is only of interest in the particular case n = 15.

Example. We will provide an example of the above, using the code 17 defined
with the order given in Table 4.1.

The STS which results in this code is formed by the following triples (see [1]):
(1, 2, 3), (1, 4, 5), (1, 6, 7), (1, 8, 9), (1, 10, 11), (1, 12, 13),
(1, 14, 15), (2, 4, 6), (2, 5, 7), (2, 8, 10), (2, 9, 11), (2, 12, 14),
(2, 13, 15), (3, 4, 7), (3, 5, 6), (3, 8, 12), (3, 9, 13), (3, 10, 14),
(3, 11, 15), (4, 8, 15), (4, 9, 14), (4, 10, 13), (4, 11, 12), (5, 8, 11),
(5, 9, 12), (5, 10, 15), (5, 13, 14), (6, 8, 14), (6, 9, 10), (6, 11, 13),
(6, 12, 15), (7, 8, 13), (7, 9, 15), (7, 10, 12), (7, 11, 14).
The codeword that we wish to construct will be v, of which we know the 11

coordinates x1, x2, x3, x4, x5, x6, x7, x8, x11, x13, x10. Starting with these coordinates
and using the value φ(v) we can calculate the 4 redundant symbols x14, x9, x12, x15,
according to the coordinate 10 in the way described in Table 5.1.

• Let us suppose the information is given by the 11 bits 010 111 001 10, which
we assume are the coordinates 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 10 of the codeword we
wish to construct (we have used the order given in Table 4.1 for code 17).
• Using the operation defined in An (according to the Steiner triples), we cal-

culate φ = [x1, x2, x3, x4, x5, x6, x7, x8, x11, x13] = [e2, e4, e5, e6, e11, e13] = e7.
• According to Table 5.1, for this value of φ(v) = e7 and knowing x10 = 0,
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there is a redundancy 0101 for which the codeword will be

v = (010 111 001 101 001)

(the order of the coordinates is 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 9, 10, 12, 15).
• Let us assume that a transmission error has occurred and that the vector

received is w = (010 101 001 101 001).
• Let us calculate the syndrome for the vector received as φ(w) = [e2, e4, e6, e11, e13,
e9, e15] = e5.
• We will correct the error made by calculating the vector v = w · e5 since
φ(v) = φ(w · e5) = e5 ∗ e5 = 0;
φ(v) = φ(w · e5) = φ(w) ∗ e5 = [e2, e4, e6, e11, e13, e9, e15] ∗ e5 =
[e2, e4, e6, e11, e13, e9, e15, e5] = [e2, e4, e6, e11, e13, e9, e5, e15] =
[e2, e4, e6, e11, e13, e1, e9, e15] = [e2, e4, e6, e11, e5, e13, e9, e15] =
[e2, e4, e6, e5, e11, e13, e9, e15] = [e2, e4, e5, e6, e11, e13, e9, e15],
so v = (010111001101001).

Remark. The calculation made, [ea1ea2 · · · earei] = [ea1ea2 · · · ear−1ei′ear ] =

[ea1ea2 . . . ear−2ei′′ear−1ear ] = . . . is as described in (3.4).

6. Conclusions and further research. In this paper, we have seen that a
partition of the n-cube on 1-perfect codes is equivalent to having a quasi-group struc-
ture An = {e0, e1, e2, . . . , en}, with zero element e0 = 0, which acts in a distance-
compatible way on F n and is an An-homomorphic image of F n.

In the specific case that An is considered to be the structure derived from a
well-ordered STS, we have seen an effective way to construct 1-perfect partitions and,
therefore, 1-perfect codes, that in the case n = 15 are systematic. Moreover, it is not
difficult to see that according to the nomenclature of Etzion and Vardy (see [2]), these
1-perfect codes are of the noninterlaced type.

Further research in this topic should include the following:

• A consideration of quasi-group structures on An with more characteristics,
for example, commutativity or associativity. In the extreme case, analysis
should also consider the case when An has the commutative group structure.
In this situation, the factorization theorem of commutative groups indicates
what the An algebraic structure should be like.
• A consideration of distance-compatible actions of An on F n, which vary

from the one given by the construction included in this paper. For instance
it could be interesting to construct distance-compatible actions of An on F n

that could not be extended the whole n-cube.
• The existence of well-ordered STSs for all n as well as is proved in the specific

case n = 15.
• The codes obtained in this paper are systematic for any value of n as well as

in the case n = 15.
• Characterization of the 1-perfect partitions such that we use the partition

to determine the algebraic properties of the perfect codes which make it up.
For example, using uniform 1-perfect partitions, we can give the propelinear
structure to all the classes of the partition (see [8]).
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Appendix.

STS q1 q2 q3 q4 q5 q6 q7 q16

1 225 0 0 0 0 0 0 0
2 129 96 0 0 0 0 0 0
3 113 24 24 64 0 0 0 0
4 73 60 60 32 0 0 0 0
5 73 108 12 32 0 0 0 0
6 45 42 90 48 0 0 0 0
7 57 36 36 96 0 0 0 0
8 65 52 12 32 28 28 8 0
9 41 32 48 52 34 18 0 0
10 41 36 62 46 26 12 2 0
11 25 6 50 62 62 12 8 64
12 41 12 69 48 45 0 10 64
13 57 20 28 72 48 0 0 0
14 65 12 24 72 36 12 4 0
15 37 30 50 40 32 36 0 0
16 113 0 0 56 0 0 56 0
17 57 12 12 64 24 48 8 0
18 37 30 38 48 24 44 4 0
19 21 14 42 64 36 36 12 64
20 23 6 36 49 63 39 9 64
21 25 0 15 81 69 21 14 91
22 21 0 12 86 77 12 17 91
23 23 6 47 42 57 34 16 122
24 23 4 38 44 57 34 25 173
25 33 4 21 45 58 51 13 167
26 37 6 32 36 51 42 21 165
27 21 2 29 37 64 57 15 183
28 21 2 25 41 53 61 22 224
29 29 6 18 54 42 54 22 178
30 21 0 10 41 76 51 26 252
31 23 8 56 38 50 34 16 96
32 17 0 15 52 49 60 32 252
33 17 0 11 33 56 61 47 297
34 19 0 10 33 51 75 37 282
35 25 0 0 30 48 72 50 313
36 19 0 8 32 96 56 14 268
37 19 0 0 24 72 36 74 322
38 19 0 4 23 44 83 52 337
39 19 0 6 39 64 73 24 290
40 23 0 6 29 73 61 33 298
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STS q1 q2 q3 q4 q5 q6 q7 q16

41 23 0 3 26 62 76 35 315
42 17 0 0 17 71 79 41 368
43 21 0 3 9 105 69 18 296
44 17 0 4 19 65 77 43 354
45 17 0 7 20 61 76 44 334
46 17 0 0 14 53 88 53 373
47 17 0 9 32 56 70 41 299
48 17 0 5 23 69 73 38 317
49 17 0 2 16 58 84 48 361
50 17 0 2 26 62 88 30 300
51 19 0 1 21 58 91 35 354
52 17 0 2 25 59 83 39 344
53 19 0 3 33 63 69 38 307
54 19 0 6 34 63 68 35 311
55 17 0 6 25 57 91 29 344
56 17 0 4 23 64 79 38 333
57 17 0 3 12 70 82 41 333
58 17 0 5 40 75 56 32 259
59 17 0 6 43 66 69 24 295
60 17 0 0 21 57 81 49 364
61 15 0 0 63 77 21 49 91
62 15 0 9 26 44 90 41 328
63 15 2 12 37 48 75 36 271
64 15 0 3 24 53 66 64 337
65 15 0 3 18 57 88 44 350
66 15 0 0 15 52 93 50 374
67 15 0 0 13 60 99 38 377
68 15 0 2 18 68 80 42 359
69 15 0 2 14 47 86 61 379
70 15 0 7 28 53 88 34 338
71 15 0 4 11 59 85 51 355
72 15 0 1 17 60 87 45 360
73 15 0 0 14 50 98 48 380
74 15 0 16 32 40 98 24 289
75 15 0 3 36 63 90 18 337
76 15 0 15 25 85 45 40 330
77 15 0 0 3 33 111 63 412
78 15 0 4 26 62 98 20 340
79 15 0 18 18 72 90 12 212
80 15 0 0 0 0 90 120 455
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