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Abstract. Let F n be the n-dimensional vector space over Z2. A (binary)
1-perfect partition of F n is a partition of F n into (binary) perfect single
error-correcting codes or 1-perfect codes.

We define two metric properties for 1-perfect partitions: uniformity and
distance invariance. Then we prove the equivalence between these properties
and algebraic properties of the code (the class containing the zero vector).
In this way, we characterize 1-perfect partitions obtained using 1-perfect
translation invariant and not translation invariant propelinear codes.

The search for examples of 1-perfect uniform but not distance invariant
partitions enabled us to deduce a non-Abelian propelinear group structure
for any Hamming code of length greater than 7.

Keywords: Perfect propelinear codes, perfect uniform partitions, perfect
distance invariant partitions.

1 Introduction

Let F n be the n-dimensional vector space over Z2. A (binary) 1-perfect
partition of F n is a partition of F n into (binary) perfect single error-correcting
codes or 1-perfect codes. Given a 1-perfect code C, we can always construct
a 1-perfect partition by means of translates of C, namely C, C + e1, C + e2,
. . ., C + en; where e1, . . . , en are the vectors with exactly one nonzero entry.
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In [3], the question of the existence of a different 1-perfect partition con-
taining a given 1-perfect code C as a class is proposed. The answer is given
in [10], where it is proved that there always exist nonequivalent 1-perfect
partitions containing a given 1-perfect code as a class.

In [7], a construction of 1-perfect codes is presented using the fact that
a 1-perfect partition can be always seen as a quasigroup. This construction
enables the full characterization of 1-perfect additive codes in a subsequent
paper ([2]). Now, in this paper we characterize a class of 1-perfect parti-
tions, namely 1-perfect uniform partitions, by proving that the code in such
partitions is always a 1-perfect propelinear code. Moreover, the subclass of
1-perfect distance invariant uniform partitions is characterized by proving
that the code is always a 1-perfect translation invariant propelinear code.

The paper is organized as follows. In Section II, we give the basic defi-
nitions for 1-perfect codes, equivalence of partitions and propelinear codes.
In Section III, we see the partial equivalence between 1-perfect propelinear
codes and 1-perfect uniform partitions. In Section IV, we see the equivalence
between 1-perfect translation invariant propelinear codes and 1-perfect dis-
tance invariant partitions. In Section V, we construct 1-perfect uniform par-
titions which are not distance invariant for all lengths n = 2t − 1 with t ≥ 4.
This construction uses a propelinear and not translation invariant structure
of translation invariant propelinear codes such as Hamming codes. In Sec-
tion VI, we briefly discuss the case of 1-perfect distance invariant nonuniform
partitions. Finally, in Section VII, we summarize the results and conclusions
of this paper.

2 Preliminaries

2.1 1-Perfect codes

The support of a vector v ∈ F n, denoted by supp(v), is the set of nonzero
coordinate positions of v. The (Hamming) weight, wt(v), of a vector v ∈ F n

is the number of its nonzero coordinates, i.e. wt(v) = |supp(v)|. We define
the (Hamming) distance between two vectors v, u ∈ F n as d(v, u) = wt(v+u).
If X ⊂ F n and v ∈ F n, we will denote the distance of v to X by d(v, X),
that is, d(v, X) = min{d(v, x) | x ∈ X}. We also define the sum X + Y as
the set of all vectors that can be expressed as a sum of a vector in X plus a
vector in Y . As usual, we will write X + x instead of X + {x}.
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A subset C of F n is called a (binary) code. If C is a linear subspace, then
C is a linear code. We call the elements of a code codewords or codevectors.
We say that two codes, C1 and C2, are isomorphic if there exists a coordinate
permutation π such that π(C1) = C2. Given two codes, C1 and C2, we say
that C1 is a translate of C2 if there is a vector v ∈ F n such that C1 = C2 + v.
Finally, we will say that two codes are equivalent if one is a translate of an
isomorphic code to the other code. In this paper, we always consider binary
codes containing the all-zero vector, denoted by 0, unless stated otherwise.

The code distance in C is dC = min{d(x, y) | x, y ∈ C, x 6= y}. The
minimum weight in C is wtC = min{wt(x) | x ∈ C \ {0}}.

A perfect single error-correcting code C of length n is a subset of F n, such
that the code distance of C is 3, and d(v, C) ≤ 1, for all v ∈ F n. For a perfect
single error-correcting code C of length n we have that |C|(n + 1) = 2n,
hence n = 2t − 1 for some positive integer t ≥ 2 (see [5]). In fact, for any
n = 2t − 1 (t ≥ 2), there is exactly one 1-perfect linear code of length n, up
to isomorphism, which is the well-known Hamming code. A perfect single
error-correcting code will be called 1-perfect code, from now on.

2.2 Equivalence of 1-perfect partitions

If n = 2t − 1, then a 1-perfect code C of length n has 2n−t codewords, and
therefore, a 1-perfect partition in F n will have 2t = n + 1 classes. Since we
always assume that 0 ∈ C, given a 1-perfect partition we will call the class
containing 0 the code. Let e0 = 0 and ei be the vector of weight 1 with the
nonzero coordinate in the ith position, for all i = 1, . . . , n. Given a 1-perfect
code C, we can always define a 1-perfect partition as {C + ei}n

i=0; we will call
it the trivial partition.

Given a 1-perfect partition, if we apply a coordinate permutation and/or
a translation by a fixed vector, then we obtain a (possibly) different 1-perfect
partition. However, two such partitions will have the same properties.

Definition 1 Let Ω = {C0, C1, . . . , Cn} and Ω′ = {C ′
0, C

′
1, . . . , C

′
n} be 1-

perfect partitions of F n. We say that Ω and Ω′ are isomorphic if there is a
coordinate permutation σ such that Ci = σ(C ′

π(i)), for all i = 0, . . . , n and

for some permutation π over the set {0, . . . , n}. We say that Ω and Ω′ are
equivalent if there is a coordinate permutation σ and a vector x ∈ F n such
that Ci = σ(C ′

π(i)) + x, for all i = 0, . . . , n and for some permutation π over

the set {0, . . . , n}.
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2.3 Propelinear codes

For the definitions and properties included in this subsection we follow [9]
and [8].

Let Sn denote the symmetric group of permutations over the set {1, . . . , n}.
For any vector v = (v1, . . . , vn) ∈ F n, we will write π(v), where π ∈ Sn, to
denote the vector (vπ−1(1), . . . , vπ−1(n)).

A code C of length n is said to be propelinear if for any codeword x ∈ C
there is πx ∈ Sn verifying the properties:

1. x + πx(y) ∈ C if y ∈ C.

2. πx ◦ πy = πz ∀y ∈ C, where z = x + πx(y).

We define the binary operation ? : C × F n −→ F n such that

x ? y = x + πx(y) ∀x ∈ C ∀y ∈ F n.

This operation is clearly associative and closed in C. Since, for any codeword
x ∈ C, x ? y = x ? z implies y = z, we have that x ? y ∈ C if and only if y ∈ C.
Thus, there must be a codeword e such that x ? e = x. It follows that e = 0
is a codeword and, from 2, we deduce that π0 is the identity permutation.
Hence, (C, ?) is a group, which is not Abelian in general; 0 is the identity
element in C and x−1 = π−1

x (x), for all x ∈ C. Note that Π = {πx | x ∈ C} is
a subgroup of Sn with the usual composition of permutations. By (C, Π) we
shall mean the set of all pairs (x, πx), where x ∈ C.

Clearly, the class of propelinear codes is more general than the class of
linear codes.

A propelinear code C is said to be a translation invariant code if

d(x, y) = d(x ? u, y ? u) ∀x, y ∈ C ∀u ∈ F n.

A propelinear code is not necessarily translation invariant. However, the
following different equation is always true:

d(u, v) = d(x ? u, x ? v) ∀x ∈ C ∀u, v ∈ F n. (1)

Using (1) we can prove (see [9]) that a propelinear code C is translation
invariant if and only if

wt(v) = d(x, v ? x) ∀x ∈ F n ∀v ∈ C. (2)
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As can be seen in [9], any translation invariant propelinear code can be
viewed as a group isomorphic to a subgroup of Zk1

2 ⊕ Zk2
4 ⊕Qk3

8 ; where k1 +
2k2 +4k3 = n and Q8 is the quaternion group on eight elements. We will say
these codes are of type (k1, k2, k3). Hence, translation invariant propelinear
codes include linear codes, of type (k1, 0, 0), and Z4-linear codes (see [4]), of
type (0, k2, 0).

Since Q8 is not Abelian, we deduce that translation invariant propelinear
Abelian codes must be of type (k1, k2, 0). In [2], it is proved that any 1-
perfect translation invariant propelinear code is of type (k1, k2, 0), except for
the Hamming code of length 7, that has structures of type (7, 0, 0), (3, 2, 0)
and (3, 0, 1).

3 1-Perfect Uniform Partitions

Given a 1-perfect partition of F n (n = 2t − 1, t ≥ 2), Ω = {C0, C1, . . . , Cn},
and a vector v ∈ F n, such that v is in the class Ck, we denote by γi(v)
(i 6= k), the only vector x ∈ Ci such that d(v, x) = 1. We also define
Γij(v) (i 6= j, i 6= k 6= j) as the class containing the only vector u such that
d(u, γi(v)) = 1, d(u, γj(v)) = 1 and d(u, v) = 2.

Definition 2 A 1-perfect partition Ω = {C0, C1, . . . , Cn} is called uniform if
the class Γij(v) does not depend on v, but only on Ck, for all v ∈ F n, where
Ck is the class containing v and i, j, k are all different.

Note that this is a geometric condition. For instance, given a 1-perfect
partition such that for all i, j = 0, . . . , n we have Ci = Cj + ek for some
k = {0, . . . , n}, then the 1-perfect partition is uniform. At the end of this
section, we will see that the trivial partition is uniform if and only if the class
containing 0 is a linear code.

Also, it is clear that if Ω and Ω′ are two equivalent 1-perfect partitions of
F n, then Ω is uniform if and only if Ω′ is uniform.

Let C be a propelinear code, we define

Ω(C) = {C0 = C, C1, . . . , Cn},

where Ci = C ? ei, for all i = 0, . . . , n. We also define the minimum distance
of Ω(C) by

δ = min
D∈Ω(C)

{d(x, y)|x, y ∈ D, x 6= y}.
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Obviously, if d is the minimum distance between codewords of C, then δ ≤ d
and if C is a translation invariant code, then δ = d.

Now, we look for some necessary conditions such that Ω(C) becomes a
1-perfect partition.

Lemma 3 If C is a 1-perfect propelinear code with δ = 3, then Ω(C) is a
1-perfect partition.

Proof. Given two different codewords, x, y ∈ C, we have that x?ei 6= y?ei, for
all i = 0, . . . , n; because d(z, z ? ei) ≤ 1, for all z ∈ C and for all i = 0, . . . , n
and d(x, y) ≥ 3. Hence, |Ci| = |C|. Thus, all classes have the correct number
of vectors to be a 1-perfect code. Since the minimum distance is always 3,
the result holds.

Corollary 4 If C is a 1-perfect translation invariant propelinear code, then
Ω(C) is a 1-perfect partition.

Proof. Since C is translation invariant, we have that δ = 3.

Now, we will see that 1-perfect propelinear codes give rise to 1-perfect
uniform partitions if δ = 3.

Lemma 5 Let C be a propelinear code and let Ci = C ? ei, for all i =
0, 1, . . . , n. Then, for all i = 0, 1, . . . , n

v ? x ∈ Ci ∀v ∈ C ∀x ∈ Ci.

Proof. If x ∈ Ci, then there is a codeword u ∈ C such that x = u?ei. Hence,

v ? x = v ? (u ? ei) = v ? (u + πu(ei))

= v + πv(u) + πv ◦ πu(ei) = v ? u + πv?u(ei)

= (v ? u) ? ei.

Since v ? u is a codeword, (v ? u) ? ei must be in Ci.

Proposition 6 Let C be a 1-perfect propelinear code with δ = 3. Then, Ω(C)
is a 1-perfect uniform partition.
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Proof. From Lemma 3, Ω(C) is a 1-perfect partition.
Let v ∈ C, then γi(v) = v ? ei and γj(v) = v ? ej. Clearly, the vector

u = v ? (ei + ej) is at distance one apart from v ? ei and from v ? ej and at
distance two from v. Thus, Γij(v) is the class containing u and by Lemma 5,
it is the same class that contains ei + ej. Hence, Γij(v) does not depend on
v.

Now, let z ∈ Ck, where k 6= 0. There must be a codeword v ∈ C such
that z = v ? ek. It is also clear that there is r ∈ {1, . . . , n} such that
γi(z) = v ? (ek + er), similarly γj(z) = v ? (ek + es), for some s ∈ {1, . . . , n}.
We assume that i 6= j and i 6= k 6= j. Then, the vector u = v ? (ek + er + es)
is at distance one apart from γi(z) and from γj(z), and at distance two from
z. Hence, Γij(z) is the class containing u. By Lemma 5, ek + er ∈ Ci,
ek + es ∈ Cj and ek + er + es ∈ Γij(z). Now, if we take another vector
x ∈ Ck, let u ∈ C be such that x = u ? ek. By Lemma 5, we have that
u ? (ek + er) ∈ Ci, u ? (ek + es) ∈ Cj and u ? (ek + er + es) ∈ Γij(z).
Consequently, γi(x) = u ? (ek + er), γj(x) = u ? (ek + es) and Γij(x) is the
class containing u ? (ek + er + es), that is, Γij(x) = Γij(z).

Conversely, we will see that the class containing 0, in any 1-perfect uni-
form partition, has a propelinear structure.

Suppose that Ω is a 1-perfect partition. Let C be the code, i.e. the class
containing 0, and let Ci be the class containing ei, for all i = 1, . . . , n. For
every codeword v ∈ C and for every i ∈ {1, . . . , n}, we define v ? ei as the
only vector x ∈ Ci such that d(v, x) = 1. Clearly, there exists a unique
permutation πv, such that v ? ei = v + πv(ei), for all i = 1, . . . , n. Now, for
any vector u ∈ F n, we can define v ? u = v + πv(u). We shall prove that
(C, ?) is a propelinear code if Ω is uniform.

Lemma 7 Let Ω be a 1-perfect uniform partition and ? as defined above. If
x ∈ Cl, then for all v ∈ C we have v ? x ∈ Cl.

Proof. We proceed by induction on the weight of x.
If wt(x) = 0 or wt(x) = 1 the result is certainly satisfied.
If wt(x) = 2 then x = ei + ej for i, j ∈ {1, . . . , n}, i 6= j. Since ei + ej is

in the class Γij(0), we have that Cl = Γij(0). Clearly, v ? (ei + ej) ∈ Γij(v).
As Ω is uniform, we obtain

Cl = Γij(0) = Γij(v) =⇒ v ? x = v ? (ei + ej) ∈ Cl.
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Now, we assume wt(x) > 2. Then, there is a vector y such that x = y+ei+
ej, where i 6= j and wt(y) = wt(x)− 2. Let p, q, r ∈ {0, . . . , n} be such that
y ∈ Cp, y+ei ∈ Cq, and y+ej ∈ Cr. Since wt(y), wt(y+ei), wt(y+ej) < wt(x)
we can apply the hypothesis of induction and obtain v?y ∈ Cp, v?(y+ei) ∈ Cq

and v ? (y + ej) ∈ Cr. Thus,

v ? x = v ? (y + ei + ej) ∈ Γqr(v ? y) = Γqr(y) = Cl.

Lemma 8 Let Ω be a 1-perfect uniform partition. Then, for all u, v ∈ C,
and x ∈ F n, u ? (v ? x) = (u ? v) ? x.

Proof. First of all, we remark that u ? (v ? x) and (u ? v) ? x belong to the
same class in Ω(C), (the class of x).

If x = ei, (i ∈ {1, . . . , n}), then

u ? (v ? ei) = u ? (v + πv(ei)) = u ? v + πu ◦ πv(ei)

and
(u ? v) ? ei = u ? v + πu?v(ei),

hence, d(u?(v?x), (u?v)?x) ≤ 2. Since u?(v?x) and (u?v)?x belong to the
same class and each class is a 1-perfect code then d(u? (v ?x), (u?v)?x) = 0.
Therefore, (u ? v) ? ei = u ? (v ? ei) for all i = 1, . . . , n

For x ∈ F n with wt(x) > 1, we can write x =
∑n

i=1 λiei (for some
λ1, . . . , λn ∈ {0, 1}) and

(u ? v) ? x = (u ? v) ?

n∑
i=1

λiei =
n∑

i=1

λi(u ? v) ? ei

=
n∑

i=1

λiu ? (v ? ei) = u ? (v ?

n∑
i=1

λiei) = u ? (v ? x).

Proposition 9 Let Ω be a 1-perfect uniform partition. Then, the code C has
a propelinear structure and, moreover, Ω = Ω(C).
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Proof. If Ω is a 1-perfect uniform partition, then for all x ∈ F n and for all
v ∈ C we can define v ? x. From Lemma 7, x ∈ Ci if and only if v ? x ∈ Ci

for every class Ci ∈ Ω. Therefore, v ? C = C for all v ∈ C.
Now we must show that if w = u ? v ∈ C, then πw = πu ◦ πv. But, from

Lemma 8 and for all ei, i = 1, . . . , n, w?ei = (u?v)?ei = u?(v?ei) and hence,
w+πw(ei) = u?v+πu◦πv(ei) = w+πu◦πv(ei) for all i = 1, . . . , n. Therefore
πw and πu ◦ πv are isometries of F n coinciding over each ei, i = 1, . . . , n and
they must be equal.

For all ei ∈ F n such that wt(ei) = 1, there exists a class D ∈ Ω such that
ei ∈ D. By Lemma 7, C ? ei ⊆ D and, since |C ? ei| = |C| = |D|, we have
C ? ei = D and Ω = Ω(C).

Propositions 6 and 9 show that there exists a correspondence between
1-perfect propelinear codes and 1-perfect uniform partitions:

Theorem 10 Let Ω be a 1-perfect partition of F n and let C be the class which
contains the vector 0. C is a propelinear code with δ = 3 and Ω = Ω(C) if
and only if Ω is a 1-perfect uniform partition.

Note that if C is a Hamming code of length n, then it has a very simple
propelinear structure (πx is the identity for all codeword x) and hence {C +
ei}n

i=0 is a 1-perfect uniform partition. Conversely, if {C+ei}n
i=0 is a 1-perfect

uniform partition, then we define ? as the addition and we obtain that (C, +)
is a group, that is, a Hamming code.

4 1-Perfect Distance Invariant Uniform Par-

titions

Definition 11 A 1-perfect partition Ω = {C0, C1, . . . , Cn} is called distance
invariant if for all k ∈ {0, 1, . . . , n} and for all x, y ∈ Ck, we have

d(x, y) = d(γi(x), γi(y)) ∀i = 0, . . . , n (i 6= k).

Lemma 12 Let Ω and Ω′ be two equivalent 1-perfect partitions of F n. Then,
Ω is distance invariant if and only if Ω′ is distance invariant.

Proof. The result is straightforward because permutations and translations
are distance-preserving.
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1-Perfect partitions generated by 1-perfect linear codes or by 1-perfect
translation invariant propelinear codes have the important property that
they are distance invariant, as we will see. We will prove that there also
exists a correspondence between 1-perfect translation invariant propelinear
codes and 1-perfect distance invariant uniform partitions.

Proposition 13 Let C be a 1-perfect translation invariant propelinear code.
Then, Ω(C) is a 1-perfect distance invariant uniform partition.

Proof. Ω(C) is a 1-perfect uniform partition by Proposition 6. We need to
show that it is distance invariant. Let x, y ∈ Ci and x′, y′ ∈ Cj at distance 1
apart from x and y, respectively. If Ci or Cj is equal to C, then the assertion
is obvious. Hence, we can assume that Ci and Cj are not equal to C.

There exist u, v ∈ C such that x = u?ei and y = v?ei with d(x, y) = d(u, v)
since C is translation invariant. Moreover, d(x′, u) = d(y′, v) = 2. Then, there
will be vectors er and es such that x′ = u ? (ei + er) and y′ = v ? (ei + es), by
Lemma 5, ei + er, ei + es ∈ Cj. But

d(ei + er, ei + es) = wt(er + es) < 3,

thus the only possibility is r = s. Therefore,

d(x′, y′) = d(u ? (ei + er), v ? (ei + er)) =

d(u, v) = d(u ? ei, v ? ei) = d(x, y).

We will see that this correspondence is reciprocal:

Proposition 14 Let Ω be a 1-perfect distance invariant uniform partition.
Then the class C ∈ Ω which contains the vector 0 is a 1-perfect translation
invariant propelinear code.

Proof. By Theorem 10, we only need to see that C is a translation invariant
code. Let x ∈ F n. From (2), it suffices to show that, for all v ∈ C, wt(v) =
d(x, v ? x).

We use induction on wt(x). If wt(x) = 0, the statement is clear. Assume
that wt(x) > 0 and that we know that the equation holds for all vectors of
weight smaller than wt(x). Write x = x′ + ei for any i ∈ supp(x). Then
d(x, x′) = 1 and d(v ? x, v ? x′) = 1. Since the partition is distance invariant,
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d(x, v ?x) = d(x′, v ?x′) and by the induction hypothesis d(x′, v ?x′) = wt(v),
because wt(x′) < wt(x).

From Theorem 10 and from Propositions 13 and 14, we obtain the next
classification theorem:

Theorem 15 Let Ω be a 1-perfect partition of F n and let C be the class which
contains the vector 0. C is a 1-perfect translation invariant propelinear code
and Ω = Ω(C) if and only if Ω is a 1-perfect distance invariant uniform
partition.

Theorems 10 and 15 characterize 1-perfect codes from 1-perfect partitions.
The first one characterizes 1-perfect codes from 1-perfect uniform partitions.
The second one characterizes 1-perfect codes from 1-perfect distance invariant
uniform partitions.

As can be seen in [2], given a 1-perfect translation invariant propelin-
ear code C of length n > 7, its translation invariant propelinear structure
is unique. Thus, Ω(C) is the unique 1-perfect distance invariant uniform
partition containing C as a class, up to equivalence.

5 1-Perfect Uniform Not Distance Invariant

Partitions

The 1-perfect partitions Ω(C) obtained when C is a 1-perfect translation
invariant propelinear code are always distance invariant partitions. In order
to find an initial example of 1-perfect uniform but not distance invariant
partition, we need to find a 1-perfect propelinear and not translation invariant
code. In this section, we will prove that any Hamming code of length greater
than 7 has a propelinear structure which is neither translation invariant, nor
Abelian. We will also find a not translation invariant propelinear structure
for any 1-perfect translation invariant propelinear code of length greater than
15.

First of all, we recall the well-known construction of Vasil’ev codes:

Theorem 16 Let Cn be a 1-perfect code of length n. Define the code

C2n+1 = {(v | v + c | p(v) + f(c)) : v ∈ F n, c ∈ Cn},
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where p is the binary parity map and f is any map from Hn to Z2, such that
f(0) = 0.

Then, C2n+1 is a 1-perfect code of length 2n + 1.

Proof. The interested reader can find the proof in [11].

We remark that if Cn is linear, then C2n+1 is linear if and only if f is a
linear morphism.

If (C, ?) is a propelinear code, then a map f : C −→ Z2 is a propelinear
morphism if f(x ? y) = f(x) + f(y), for all x, y ∈ C.

Theorem 17 Let Cn be a 1-perfect propelinear code of length n. Let p and
f be as defined in Theorem 16, such that f is a propelinear morphism. Then,
the code C2n+1 defined as

C2n+1 = {(v | v + c | p(v) + f(c)) : v ∈ F n, c ∈ Cn}

is a 1-perfect propelinear code.

Proof. Assign the permutation πx = (πc | πc | Id) to each codeword x ∈
C2n+1, such that

x = (v | v + c | p(v) + f(c)); where v ∈ F n, c ∈ Cn.

Then, let

y = (u | u + d | p(u) + f(d)) ∈ C2n+1, (u ∈ F n, d ∈ Cn).

First, we will show that x ? y ∈ C2n+1.

x ? y = (v | (v + c) | p(v) + f(c)) + (πc(u) | πc(u) + πc(d) | p(u) + f(d))

= (v + πc(u) | v + πc(u) + c + πc(d) | p(v) + p(u) + f(c) + f(d))

= (v + u′ | v + u′ + c ? d | p(v + u) + f(c ? d)),

where u′ = πc(u). Now, let z = v + u′ ∈ F n. Since c ? d ∈ Cn we can write

x ? y = (z | z + w | p(z) + f(w)),

where w = c ? d. Since z ∈ F n and w ∈ Cn, we have that x ? y ∈ C2n+1.
On the other hand, πx?y = (πw | πw | Id). Since πw = πc?d = πc ◦ πd, we

have that
πx?y = (πc ◦ πd | πc ◦ πd | Id) = πx ◦ πy.
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Now, we start from G7 = H7 with the propelinear structure of type
(3, 2, 0). Define

G2n+1 = {(v | v + c | p(v + c)) : v ∈ F n, c ∈ Gn},

where n = 2t − 1, t ≥ 3.

Theorem 18 For all n = 2t − 1 where t ≥ 3, the code G2n+1 is a 1-perfect
linear (Hamming) code of length 2n + 1 and, moreover, G2n+1 has a prope-
linear structure that is neither Abelian, nor translation invariant.

Proof. By Theorem 17, G2n+1 is a 1-perfect linear and propelinear code, since
the binary parity map is a linear and propelinear morphism. A propelinear
structure of G2n+1 can be obtained by assigning the permutation πx = (πc |
πc | Id) to each x ∈ G2n+1 such that

x = (v | v + c | p(v + c)); where v ∈ F n, c ∈ Gn.

In G7, any πw (w ∈ G7) is a product of disjoint transpositions (see [9] or [2]).
Then, πc and πx are also a product of disjoint transpositions. Hence πx is an
order 2 permutation for all x ∈ G2n+1. Let c ∈ Gn such that πc 6= Id, and
let v = 1 be the all-one vector. Define

x = (v | v + c | p(v + c)) ∈ G2n+1.

Let (i, j) be a transposition factor of πc (i < j ≤ n). Now, let u ∈ F n such
that ui 6= uj, and let

y = (u | u + c | p(u + c)) ∈ G2n+1.

Put z = x ? y and z′ = y ? x. Then, it is easy to verify that zi 6= z′i and
zj 6= z′j. Thus x ? y 6= y ? x.

Now, consider x ? ei = x + ej. We have that

d(ei, x ? ei) = wt(ei + (x ? ei)) = wt(x + ei + ej) = wt(x)− 2.

Since d(ei, x?ei) 6= wt(x), we conclude that G2n+1 is not translation invariant,
by (2).

Note that for all n = 2t − 1 (t ≥ 3), the elements of Gn have order 2 or
4, since the associated permutations have order 2.
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Corollary 19 Ω(Gn) = {Gn ? ei}n
i=0 is a 1-perfect uniform partition, which

is not distance invariant and, hence, is not equivalent to the trivial partition.

Proof. If Ω(Gn) is a 1-perfect partition, it must be uniform and not distance
invariant by Theorems 10 and 15. Hence, it will not be equivalent to {Gn +
ei}n

i=0, which is distance invariant. We have to show that Ω(Gn) is a 1-perfect
partition.

Trivially, Ω(Gn) is a partition of F n, where each class has the same num-
ber of vectors. Thus, we only need to prove that the minimum distance
in every class is 3. Suppose that there exist x, y ∈ Gn and ei such that
d(x ? ei, y ? ei) < 3, where x 6= y. Then, we have d(ei, x

−1 ? y ? ei) < 3, i.e.
we have a codeword z = x−1 ? y such that d(ei, z ? ei) = 1 or d(ei, z ? ei) = 2.

In the first case, we would have wt(z) = 3 and wt(z + πz(ei) + ei) = 1.
In the second case, we would have wt(z) = 4 and wt(z + πz(ei) + ei) = 2. In
any case, we would have that πz(ei) = ej 6= ei, and i, j ∈ supp(z).

Let ν = (n− 1)/2, then we know that

z = (v | v + c | p(v + c)) for some v ∈ F ν and c ∈ Gν .

We also know that πz = (πc | πc | Id). Since πz 6= Id, we have that πc 6= Id
and, hence, c 6= 0. Now, suppose that supp(v) is not included in supp(c). Let
α and β be the pair of vectors such that α+β = v and supp(α)∩supp(c) = ∅,
supp(β) ⊂ supp(c).

Then, we have

wt(z) ≥ wt(v) + wt(v + c)

= wt(α) + wt(β) + wt(α) + wt(c)− wt(β)

= 2wt(α) + wt(c) ≥ wt(c) + 2 ≥ 5,

which is a contradiction. Therefore, the support of v must be included in the
support of c. Since ej = πz(ei) and πz = (πc | πc | Id) we have that either i
and j or i− ν and j − ν are in the support of c. Let (i′, j′) = (i, j) if i, j ≤ ν
and (i′, j′) = (i− ν, j − ν) if i, j > ν. Then (i′, j′) is a transposition factor of
πc. On the other hand,

wt(c) = wt(v) + wt(v + c) ≤ wt(z) ≤ 4.

The conclusion is that there is a codeword c of weight less than 5 in Gν and
there is a coordinate position i′ such that i′ and πc(i

′) are in the support of
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c. Repeating this argument, we would have that one such codeword would
also be in G7. Hence, if we let x ∈ G7 be such a codeword, we would have
that d(ek, x?ek) 6= wt(x) for some k ≤ 7. This is not possible, however, since
we started with the propelinear structure of type (3, 2, 0) in G7 and, thereby,
G7 is translation invariant.

We can use the same construction to get 1-perfect uniform and not dis-
tance invariant partitions with nonlinear (but, obviously propelinear) codes.
Let Gn be a 1-perfect translation invariant propelinear, but not linear, code
of length n ≥ 15. As before, define

G2n+1 = {(v | v + c | p(v + c)) : v ∈ F n, c ∈ Gn}

and assign the permutation πx = (πc | πc | Id) to each x ∈ G2n+1 such that

x = (v | v + c | p(v + c)); where v ∈ F n, c ∈ Gn.

It can be easily verified that G2n+1 has a not translation invariant propelinear
structure by using the same arguments as in Theorem 18. Hence, by the
arguments of the proof of Corollary 19, Ω(Gn) will be a 1-perfect uniform
and not distance invariant partition for all n = 2t − 1, where t > 4. We
remark that, in this case, Gn is not a linear code:

Proposition 20 With the above construction, Gn is not a linear code, for
all n = 2t − 1, where t ≥ 4.

Proof. We already know that G15 is not a linear code. Inductively, suppose
that Gn is not a linear code, we want to prove that G2n+1 cannot be linear.

Let c, d ∈ Gn such that c + d /∈ Gn. Now, consider the codewords x =
(0 | c | p(c)) and y = (0 | d | p(d)) in G2n+1. Then,

x + y = (0 | c + d | p(c + d)),

which is not a codeword in G2n+1 because c + d /∈ Gn.

6 1-Perfect Distance Invariant Nonuniform Par-

titions

We have only eight examples of 1-perfect distance invariant nonuniform par-
titions. As can be seen in [6], there are 11 nonequivalent partitions of length
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7, three of them are uniform partitions corresponding to the 3 different trans-
lation invariant propelinear structures (see [9] or [2]) of the Hamming code
of length 7. However, all 11 partitions must be distance invariant:

Theorem 21 Any 1-perfect partition of length 7 is distance invariant.

Proof. Recall that any 1-perfect code of length 7 is equivalent to the Ham-
ming code and the distance (or weight) distribution is {0, 3, 4, 7}. Let x and y
be two vectors in the same class, and let x′ and y′ be two vectors in any other
class such that d(x, x′) = d(y, y′) = 1. If d(x, y) 6= d(x′, y′), then d(x, y) =
d(x′, y′)±2. However, this is not possible because d(x, y), d(x′, y′) ∈ {3, 4, 7}.

Therefore, we have 8 1-perfect partitions of length 7 that are distance
invariant and nonuniform.

7 Conclusions

Given a 1-perfect code C we can always construct several nonequivalent 1-
perfect partitions containing C as a class (see [10]). The classes of these
partitions can be obtained by means of translations or other techniques. If
C is linear, then the translations always give the trivial partition. However,
these Hamming codes always have a propelinear (nonlinear) structure which
allows us to construct other 1-perfect partitions.

We have characterized the 1-perfect partitions obtained from propelinear
codes, namely, 1-perfect uniform partitions, and vice versa. Also, we have
shown the equivalence between 1-perfect distance invariant uniform parti-
tions and 1-perfect translation invariant propelinear codes.

We have shown that any Hamming code of length n ≥ 15 has a non-
Abelian propelinear structure. The use of this algebraic structure allows to
construct 1-perfect uniform but not distance invariant partitions.

Finally, we have found eight examples of 1-perfect distance invariant
nonuniform partitions. All these examples are 1-perfect partitions of length
7. Thus, it remains an open question the existence of such partitions of
length greater than 7.
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