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has no root in any subfield ofq containing q , it suffices to show
that it has no root in the largest proper subfieldq , m = e=p. Sup-
pose� is a root off(x) in q . Set�k := G0(�), �k�1 := G1(�),
and so on. We get�0 := Gk(�) 6= 0, thus, obtain a solution to (11)
with �0 6= 0 contained in q . In particular, there is an integer` � k
such that̀ +1 = pm (sincepm � k+1). The polynomialxq+x+�`

has a root in q . This contradicts Proposition 6.

Recall thatK = GF(q2),Km is GF(q2p ), andlg(l) is defined as
the unique integer such that2lg(l) � l � 2lg(l)+1 � 1.

Proposition 8: If (�0; �1; �2; . . .) is a sequence of elements of�
that satisfies

�q0 + �0 =0; �0 6= 0;

�qi + �i =�i�1; for i = 1; 2; 3; . . .

then�0 2 q , �1 2 K n q, and�i 2 Klg(i) nKlg(i)�1 for i > 1.
Proof: It is obvious that�q0 = �0 ) �0 2 q. Repeated ap-

plications of Proposition 7 show that�i 2 Klg(i) nKlg(i)�1 for each
i = 1; 2; . . . .
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Nonexistence of Completely Transitive Codes with
Error-Correcting Capability

Joaquim Borges, Josep Rifà, Member, IEEE, and Victor Zinoviev

Abstract—The class of completely transitive codes was introduced by
Solé as a proper subclass of binary linear completely regular codes. There
exist completely transitive codes with error-correcting capabilities =

1 2 and 3. In a previous correspondence, Borges and Rifà proved the
nonexistence of completely transitive codes with more than two codewords
and error-correcting capability 4. In this correspondence, we prove
the nonexistence for the remaining case, namely, = 4. Therefore, the
question of the existence of such codes, depending on their error-correcting
capability, is completely solved.

Index Terms—Completely regular codes, completely transitive codes,
permutation groups.

I. INTRODUCTION

Let Fn be then-dimensional vector space over GF(2). TheHam-
ming weightwt (v) of a vectorv 2 Fn is the number of its nonzero
coordinates. TheHamming distancebetween two vectorsv; u 2 Fn

is d(v; u) = wt (v + u).
A binary linear codeC of lengthn is a linear subspace ofFn. The

elements ofC are calledcodewords. We will denote byd theminimum
distancebetween any two distinct codewords. We callC an e-error-
correctingcode ife � d�1

2
. Given any vectorv 2 Fn, its distance to

the codeC is d(v; C) = minx2Cfd(v; x)g and thecovering radiusof
the codeC is � = maxv2F fd(v; C)g. Given two setsX; Y � Fn;
we also define the sumX + Y as the set of all vectors that can be
expressed as the sum of a vector inX and a vector inY . We write
X + x instead ofX + fxg.

A binary linear codeC of lengthn is calledcompletely regularif
8v 2 Fn and8p = 0; . . . ; n, the number of codewords at distancep
apart fromv depends only onp andd(v; C).

An automorphismof C is a coordinate permutation fixingC. The set
of all automorphisms ofC is thefull automorphism groupof C and is
denoted byAut (C).Aut (C) acts in the following way on the quotient
setFn=C:

8� 2 Aut(C) �(C + x) = C + �(x)

for all x 2 Fn.
We callC acompletely transitivecode ifAut (C) acting onFn=C has

exactly� + 1 orbits. Since two cosets in the same orbit have identical
weight distribution, we have that a completely transitive code is always
completely regular. For a more detailed proof see [14].

Let C be a binary lineare-error-correcting code. It has been conjec-
tured for a long time that ifC is a completely regular code andj C j> 2,
thene � 3. In fact, this conjecture has been also stated for nonbinary
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and nonlinear codes. Moreover, in [11] it is conjectured that the only
completely regular codeC with j C j> 2 andd � 8 is the well-known
extended binary Golay code.

For e = 1; 2; or 3; there exist completely transitive codes (see [2],
[5], [14]). As we have mentioned earlier, fore > 3 it has been conjec-
tured that there is no completely regular code containing more than two
codewords, and hence there is no completely transitive code, with the
exception of the trivial or the repetition codes. This has been proven for
the casee = � (perfectcodes) independently by Zinoviev and Leontiev
[17] and by Tietäväinen [15] in 1973, and also for the casee+ 1 = �
(quasi-perfect uniformly packedcodes) by Van Tilborg in 1976 (see [6]
and also [13]). For� > e+ 1 there is no proof of the conjecture.

In [2], we proved that there are no completely transitive codes with
error-correcting capabilitye � 5 and more than two codewords.
Hence, the casee = 4 remained unsolved after [2]. In this corre-
spondence, we solve this last case by showing the nonexistence of
completely transitive codes withe � 4 and more than two codewords.

II. M ULTIPLE TRANSITIVITY AND HOMOGENEITY

Let G be a finite permutation group acting on ann-setX. We say
that G hasdegreen. G is called t-transitive (0 < t � n) if for
any pair of orderedt-tuples of distinct elements ofX (x1; . . . ; xt) and
(y1; . . . ; yt) there exists� 2 G such that�(xi) = yi(1 � i � n).
G is calledt-homogeneous(0 < t � n) if for any pair of unordered
t-sets of distinct elements ofXfx1; . . . ; xtg andfy1; . . . ; ytg there
exists� 2 G such that�(fx1; . . . ; xtg) = fy1; . . . ; ytg.

Of course, ifG is t-transitive, it is also(t�1)-transitive andt-homo-
geneous. We also remark that ifG is t-homogeneous it is(n� t)-ho-
mogeneous.

The following result on transitivity and homogeneity was stated by
Livingstone and Wagner (1965, [10]),

Theorem 1: If G is t-homogeneous, where2 � t � n=2, thenG is
(t� 1)-transitive, and fort � 5, event-transitive.

Proof: See [10] or [1, Theorem 2.19, p. 251].

We will use the following classification theorem.

Theorem 2: LetG be a finitet-transitive group of degreen.

i) If t > 5, thenG is the symmetric or the alternating group of
degreen.

ii) If t = 5 andG is not the symmetric or the alternating group,
thenG is one of the Mathieu groupsM12 orM24 (of degree12
or 24, respectively).

iii) If t = 4, thenG is one of the above, orG is one of the Mathieu
groupsM11 orM23 (of degree11 or 23, respectively).

Proof: The reader may see [3], [4, p. 591], or [7, pp. 623–625].

Finally, we will also use a result due to Kantor (1972, [9]).

Theorem 3: Let G be a finite 4-homogeneous group of degree
n � 8 which is not4-transitive. ThenG is similar toPSL(2; 8),
P�L(2; 8) orP�L(2; 32), in their usual permutation representations.

Proof: See [9].

III. T HE NONEXISTENCE OFCOMPLETELY TRANSITIVE CODES

The following result may be found in [14, Proposition 7.3].

Proposition 4: If an e-error-correcting codeC is a completely tran-
sitive code, thenAut (C) is e-homogeneous on the coordinate posi-
tions.

In order to prove our main theorem, we need some lemmas.

Lemma 5: Let C � Fn be a binary code with minimum distance
d � 3. If Aut (C) is the symmetric groupSn or the alternating group
An, thenjCj � 2.

Proof: Suppose thatC has a codewordx = (x1; . . . ; xn) which
is neither the all-zero vector nor the all-one vector. Then, leti; j; and
k be distinct indexes such thatxj 6= xk(i; j; k 2 f1; . . . ; ng). The
permutation cycle� = (i; j; k) is in the alternating and symmetric
group, sod(x; �(x))=2 and this contradicts the assumptiond�3.

Lemma 6: There is no binary linear completely regular codeC of
lengthn=33 and minimum distanced2f9; 10g.

Proof: Suppose thatC is such a code. Then the minimum
weight codewords form a4 � (33; 9; �)-design, if d = 9; or a
5 � (33; 10; �)-design, ifd = 10 (see [16]).

In the first case, the number of blocks should be

�
33

4

9

4

= �
31 � 11 � 4 � 5

3 � 7

which clearly implies� � 21. Given four coordinate positions, there
are� codewords of weight9 covering these four coordinates. Since
the minimum distance between two codewords is9, it follows that the
supports of two minimum-weight codewords covering the same4-set
of coordinates do not intersect in any other position. Hence we obtain

� �
33� 4

9� 4
=

29

5

which implies� � 5, a contradiction.
For the second case(d = 10) one can obtain exactly the same con-

tradiction with this argument.

The following property on binary linear codes is known as the
Griesmer bound.

Lemma 7: Let C be a binary linear code of lengthn, dimensionk,
and minimum distanced. Then

n �

k�1

i=0

d

2i

Proof: See [8].

Now, we prove our main result which is a generalization of [2, The-
orem 5].

Theorem 8: If C � Fn is ane-error-correcting completely transi-
tive code, thene � 3 or jCj � 2.

Proof: Assume thatC is ane-error-correcting completely transi-
tive code, withe � 4.Aut (C)must bee-homogeneous by Proposition
4. If jCj > 2, thenC has dimensionk > 1, minimum distanced < n,
and error-correcting capabilitye < n=2. Thus, if e � 5, Aut (C)
must also bee-transitive by Theorem 1, wherease = 4 implies that
Aut (C) is 4-transitive or it is similar toPSL(2; 8), P�L(2; 8), or
P�L(2; 32) by Theorem 3. Now, by Theorems 2 and 3, we have that
Aut (C) must be one of the following:

i) Sn, An; or

ii) Mn, for n 2 f11; 12; 23; 24g; or

iii) PSL(2; 8), P�L(2; 8), P�L(2; 32).

For case i), we would havejCj � 2 by Lemma 5.
For case ii), ifn = 11 or n = 12, thend � 2e + 1 � 9 is clearly

impossible because the Griesmer bound (Lemma 7) givesn � 14 for
k � 2. If n = 23, then the minimum-weight codewords form an
e�(n; d; �)-design (recall thatC is also a completely regular code, see
[16]) with e � 4 andn � d+2, therefore, the number of blocks should
beb � n(n�1)=2 (this bound is given in [12]). Hence, we have at least
23�22=2 = 253minimum-weight codewords andC has dimensionk �
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8. Moreover, ifd = 9, then the subspace spanned by the minimum-
weight codewords will have twice this number of codewords (because
adding two codewords of weight9 cannot give another codeword of
weight9); thus, if d = 9, we havek � 9. Now, using the Griesmer
bound (Lemma 7) fork � 8, d � 10 or k � 9, d � 9, we obtain
n � 24. Hence, casen = 23 is impossible. Finally, ifn = 24, we
have that the number of minimum-weight codewords is at leastn(n�
1)=2 = 276 andC has dimensionk � 9. As before, ifd = 9, then
k � 10. Now the Griesmer bound fork � 9, d � 10 ork � 10, d � 9
givesn � 25. Therefore, casen = 24 is also impossible.

For case iii), recall that the projective special linear group
PSL(2; 8) and the projective semilinear groupP�L(2; 8) are
4-homogeneous acting onn = 9 points. Sincen > d � 9, Aut (C)
cannot be anyone of these groups. Finally, the projective semilinear
groupP�L(2; 32) acts4-homogeneously (not4-transitively) on 33
points. Thus, ifAut (C) = P�L(2; 32), thenC is a4-error-correcting
completely transitive (and completely regular) code of lengthn = 33
andd 2 f9; 10g, but this code does not exist, as we have seen in
Lemma 6.
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Intersection Matrices for Partitions by Binary Perfect
Codes

Sergey V. Avgustinovich, Antoine C. Lobstein, and Faina I. Solov’eva

Abstract—We investigate the following problem: given two partitions of
the Hamming space, theirintersection matrixprovides the cardinalities of
the pairwise intersections of the subsets of these partitions. If we consider
partitions by extended perfect codes, how many intersection matrices can
we construct?

Index Terms—Concatenated codes, extended perfect codes, intersection
matrices, partitions, strongly orthogonal Latin squares.

I. INTRODUCTION

LetFn

q be the vector space of lengthn over the fieldFq, q a prime
power. The (Hamming)distance, d(xxx; yyy), between two vectorsxxx and
yyy of Fn

q is the number of positions where they differ; the (Hamming)
weightof a vector is its distance to the all-zero vector. Aq-arycodeof
lengthn is simply a subset ofFn

q , whose elements are calledcode-
words. Assuming thatjCj � 2, the minimum distanceof C is the
smallest distance between two distinct codewords ofC.

Here we shall mainly deal withbinary extended perfect codes. These
are codes with the following parameters: alphabetF2 := F := f0; 1g,
lengthn = 2t (t � 2 integer), size2n�1�t, and minimum distance4.

It is known thatn extended perfect codesC1, C2; . . . ; Cn can par-
tition the setEn � Fn of even-weight vectors, andn extended perfect
codesCn+1; Cn+2; . . . ; C2n can partition the setOn := FnnEn, the
set of odd-weight vectors. Two constructions of nontrivial partitions of
Fn�1 into nonextended perfect codes can be found in [1]. The problem
of the construction of partitions ofFn is also considered in [2].

If we are given a second partitionD1; D2; . . . ; Dn of En and
Dn+1; Dn+2; . . . ; D2n of On, we are interested in the following
problem: we define theintersection matrixof these two partitions,
IM(C; D), by

IM(C; D) = [jCi \Dj j]i=1; ...;2n; j=1; ...;2n:

Note that each row and each column ofIM(C; D) sums up to2n�1�t.
Two matrices are calledequivalentif one can be obtained from the

other by permutations of rows and columns. Now, how manydifferent
and how manynonequivalentintersection matrices of two partitions
can we construct? In order to obtain bounds on these numbers, we first
consider different partitions ofFn, which we use for building two par-
titions ofF2n, of which we study the possible intersection matrices.
We then establish that the number of different, or nonequivalent, inter-
section matrices is at least2cn and at most2c n , wheren is large and
c; c0 are positive constants.

In the next sections, we shall use the following notation and need the
following definitions.
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