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has no root in any subfield &f 2. containingF 2, it suffices to show
that it has no root in the largest proper subfiglg., m = e/p. Sup-
poses is aroot off(x) in F 2m. Setay := Go (), ar—1 1= G1(f),
and so on. We gety := G« (3) # 0, thus, obtain a solution to (11)
with g # 0 contained irf 2 . In particular, there is an integér< &
suchthat+1 = pm (sincepm < k+1). The polynomiak? +z+a,
has a root ifF- ;2. This contradicts Proposition 6. O

Recall thatk’ = GF(¢?), K, is GF(¢**"), andlg(l) is defined as
the unique integer such thalt() < | < 2!+t _ 1,

Proposition 8: If (g, a1, oz, ..
that satisfies

.) is a sequence of elements®df

ap £ 0,
fori=1,2,3,...

ag + g =0,

a? + o = a1,

thenag € Fy, a0 € K\ Fy, ando; € Kig(iy \ Kigi)—1 fori > 1.
Proof: It is obvious thatvl = ap = ag € F,. Repeated ap-

plications of Proposition 7 show that € K(;) \ K,y for each

i=1.2,.... O
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Nonexistence of Completely Transitive Codes with
Error-Correcting Capability e > 3

Joaquim Borges, Josep Rifdlember, IEEEand Victor Zinoviev

Abstract—The class of completely transitive codes was introduced by
Solé as a proper subclass of binary linear completely regular codes. There
exist completely transitive codes with error-correcting capabilitiese =
1, 2, and 3. In a previous correspondence, Borges and Rifa proved the
nonexistence of completely transitive codes with more than two codewords
and error-correcting capability e > 4. In this correspondence, we prove
the nonexistence for the remaining case, namelg = 4. Therefore, the
question of the existence of such codes, depending on their error-correcting
capability, is completely solved.

Index Terms—Completely regular codes, completely transitive codes,
permutation groups.

|. INTRODUCTION

Let F" be then-dimensional vector space over GH. TheHam-
ming weightwt (v) of a vectorv € F™ is the number of its nonzero
coordinates. Thélamming distancéetween two vectors, u € F"
isd(v, u) = wt (v + u).

A binary linear codeC of lengthn is a linear subspace @ . The
elements of are calleccodewordsWe will denote byl the minimum
distancebetween any two distinct codewords. We calan e-error-
correctingcode ife < % Given any vector € F", its distance to
the code” is d(v, C) = min,ec{d(v, «)} and thecovering radiusof

nﬁ],e code’ is p = max,ecr~{d(v, C)}. Giventwo setsX, Y C F",
we also define the su’X + Y as the set of all vectors that can be
expressed as the sum of a vectornand a vector int”. We write
X + =z instead ofX + {z}.

A binary linear code” of lengthn is calledcompletely regulaif
Yo € F" andvp = 0, ..., n, the number of codewords at distance
apart fromv depends only op andd(v, C).

of An automorphisnof C is a coordinate permutation fixing The set
of all automorphisms of is thefull automorphism groupf C and is

denoted byAut (C). Aut (C) acts in the following way on the quotient
setF"/C:

ds Vo € Aut(C) a(C+x) =C+ a(x)
forallz € F".
We callC acompletely transitiveode ifAut (C) acting onF™ /C has

plexity algorithm for the construction of algebraic_geometric codegyactly, + 1 orbits. Since two cosets in the same orbit have identical
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and nonlinear codes. Moreover, in [11] it is conjectured that the onlyLemma 5: LetC C F" be a binary code with minimum distance
completely regular codé with | C |> 2 andd > 8 is the well-known d > 3. If Aut (C) is the symmetric grou,, or the alternating group

extended binary Golay code. A, then|C| < 2.

Fore = 1, 2, or 3, there exist completely transitive codes (see [2], Proof: Suppose thaf has a codeword = (x1,...,x,) which
[5], [14]). As we have mentioned earlier, fer> 3 it has been conjec- is neither the all-zero vector nor the all-one vector. Theni,l¢t and
tured that there is no completely regular code containing more than tivdoe distinct indexes such tha # =z (i, j, £ € {1,...,n}). The

codewords, and hence there is no completely transitive code, with lermutation cycler = (i, j, k) is in the alternating and symmetric
exception of the trivial or the repetition codes. This has been proven fimoup, sol(x, 7(x))=2 and this contradicts the assumptioéi 3. [
the case = p (perfectcodes) independently by Zinoviev and Leontiev
[17] and by Tietavainen [15] in 1973, and also for the casel = p
(quasi-perfect uniformly packembdes) by Van Tilborg in 1976 (see [6]
and also [13]). Fop > e + 1 there is no proof of the conjecture.

In [2], we proved that there are no completely transitive codes wi
error-correcting capability > 5 and more than two codewords.
Hence, the case = 4 remained unsolved after [2]. In this corre-
spondence, we solve this last case by showing the nonexistence of
completely transitive codes with> 4 and more than two codewords.

Lemma 6: There is no binary linear completely regular cadef
lengthn = 33 and minimum distancé € {9, 10}.
Proof: Suppose thaC is such a code. Then the minimum
{ﬁeight codewords form d — (33, 9, \)-design, ifd = 9; or a
o — (33, 10, p)-design, ifd = 10 (see [16]).
In the first case, the number of blocks should be
33 -
)\%:/\31-;1.%4-0
4
which clearly implies\ > 21. Given four coordinate positions, there
are A codewords of weigh® covering these four coordinates. Since
Let G be a finite permutation group acting on arset X. We say the minimum distance between two codeword3, ii follows that the
that G hasdegreen. G is calledt-transitive (0 < t < n) if for  supports of two minimum-weight codewords covering the sarset

Il. MULTIPLE TRANSITIVITY AND HOMOGENEITY

any pair of ordered-tuples of distinct elements df (x1,...,z;) and of coordinates do not intersect in any other position. Hence we obtain
(y1,...,y:) there existsy € G such thaiv(x;) = y;(1 < i < n). 33-4 929

G is calledt-homogeneou) < t < n) if for any pair of unordered A< 9_-4 3

t-sets of distinct elements of {«1,...,2:} and{y1,...,y:} there

which impliesA < 5, a contradiction.
For the second cagd = 10) one can obtain exactly the same con-
tradiction with this argument. O

existsw € G such thatv({x1,....2¢}) = {y1,.. - ¥}

Of course, ifG ist-transitive, itis als@t — 1)-transitive and-homo-
geneous. We also remark thatGfis t-homogeneous it isn — ¢)-ho-
mogeneous. The following property on binary linear codes is known as the

The following result on transitivity and homogeneity was stated b@riesmer bound.

Livingstone and Wagner (1965, [10]), . . . .
g gner ( (10D Lemma 7: Let C be a binary linear code of length dimensionk,

Theorem 1: If G ist-homogeneous, whee< ¢ < n/2,thenGis  and minimum distancé. Then

(t — 1)-transitive, and fot > 5, event-transitive. E—1
Proof: See [10] or [1, Theorem 2.19, p. 251]. O n > Z {211
We will use the following classification theorem. =0
Proof: See [8]. O

Theorem 2: Let G be a finitet-transitive group of degree.

) ] ) ) Now, we prove our main result which is a generalization of [2, The-
i) If £ > 5, thenG is the symmetric or the alternating group Ofgrem s5).

degreen.

i) If + = 5 andG is not the symmetric or the alternating groupﬁv
thenG is one of the Mathieu group¥/; » or M4 (of degreel2
or 24, respectively).

Theorem 8:If C C F" is ane-error-correcting completely transi-
e code, ther < 3 or|C| < 2.
Proof: Assume thaf’ is ane-error-correcting completely transi-
] ) ~ tive code, withe > 4. Aut (C) must bez-homogeneous by Proposition
i) If + =4, thenG is one of the above, dF is one pf the Mathieu 4 ¢ IC| > 2, thenC has dimensiott > 1, minimum distancel < n,
groupsM; or Mz (of degreell or 23, respectively). and error-correcting capability < n/2. Thus, ife > 5, Aut (C)
Proof: The reader may see [3], [4, p. 591], or [7, pp. 623—625]Must also be-transitive by Theorem 1, whereas= 4 implies that
Aut (C) is 4-transitive or it is similar toaPSL(2, 8), PT'L(2, 8), or
Finally, we will also use a result due to Kantor (1972, [9]). PTL(2, 32) by Theorem 3. Now, by Theorems 2 and 3, we have that

Aut (C) must be one of the following:
Theorem 3: Let ¢ be a finite 4-homogeneous group of degree

n > 8 which is not4-transitive. ThenG is similar to PSL(2, 8), ) Suy An;or
PT'L(2, 8) or PT'L(2, 32), intheir usual permutation representations. ii) Af,, forn € {11, 12, 23, 24}; or
Proof: See [9]. D i) PSL(2,8), PTL(2, 8), PTL(2, 32).

For case i), we would hay€| < 2 by Lemma 5.

For case ii), ifn = 11 orn = 12, thend > 2e + 1 > 9 is clearly
The following result may be found in [14, Proposition 7.3]. impossible because the Griesmer bound (Lemma 7) givesl4 for

" . . . k > 2.1f n = 23, then the minimum-weight codewords form an
si tséoggzgoi]hi}]if atlrz g-eirsror_-r(]:(())r:?)ctér;gegagéo:qs t?]gogglr%tiiztganc;si?_ (n, d, \)-design (recall thaf is also a completely regular code, see
tions. ' uel)ise 9 P [16]) withe > 4 andn > d+2, therefore, the number of blocks should
beb > n(n—1)/2 (this bound is given in [12]). Hence, we have at least

In order to prove our main theorem, we need some lemmas. 23-22/2 = 253 minimum-weight codewords artthas dimensio& >

I1l. THE NONEXISTENCE OFCOMPLETELY TRANSITIVE CODES
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8. Moreover, ifd = 9, then the subspace spanned by the minimum- Intersection Matrices for Partitions by Binary Perfect
weight codewords will have twice this number of codewords (because Codes

adding two codewords of weigft cannot give another codeword of

weight9); thus, ifd = 9, we havek > 9. Now, using the Griesmer Sergey V. Avgustinovich, Antoine C. Lobstein, and Faina I. Solov’eva
bound (Lemma 7) fok > 8,d > 10 ork > 9,d > 9, we obtain

n > 24. Hence, case = 23 is impossible. Finally, if. = 24, we

have thathhe number of mlnlmym-welght COdeWOI’d.S s at legst the Hamming space, theirintersection matrixprovides the cardinalities of
1)/2 = 276 andC has dimensiot > 9. As before, ifd = 9, then the pairwise intersections of the subsets of these partitions. If we consider

k > 10. Now the Griesmer bound fdr> 9,d > 10ork > 10,d > 9  partitions by extended perfect codes, how many intersection matrices can
givesn > 25. Therefore, case = 24 is also impossible. we construct?

For case iii), recall that the projective special linear group Index Terms—Concatenated codes, extended perfect codes, intersection
PSL(2,8) and the projective semilinear groupT'L(2, 8) are matrices, partitions, strongly orthogonal Latin squares.
4-homogeneous acting on = 9 points. Since: > d > 9, Aut (C)
cannot be anyone of these groups. Finally, the projective semilinear
group PT'L(2, 32) acts4-homogeneously (not-transitively) on 33 |. INTRODUCTION
points. Thus, ifAut (C) = PI'L(2. 32), thenC is a4-error-correcting | et 7" be the vector space of lengthover the fieldF,, ¢ a prime
completely transitive (and completely regular) code of length 33 power. The (Hammingjlistance d(z. y), between two vectors and
andd € {9, 10}, but this code does not exist, as we have seen jnof 7" is the number of positions where they differ; the (Hamming)
Lemma 6. weightof a vector is its distance to the all-zero vectorgAry codeof
lengthn is simply a subset of;', whose elements are calledde-
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