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Abstract

We will study 1-perfect partitions, some of their constructions and the alge-
braic structures related to them. We will see the ways of constructing 1-perfect
partitions on the n-cube (Z/2)"™ by using a generalized Slov’eva-Phelps’ switching
technique. For each 1-perfect distance-preserving partition we can define an asso-
ciated operation such that F" becomes distance-compatible quasigroup. We relate
the quasigroups associated to isomorphic or equivalent distance-preserving 1-perfect
partitions.
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Introduction

Let F™ be a vector space of dimension n over Z/2. The Hamming distance between vectors
x,y € F", denoted by d(z,y), is the number of coordinates in which z and y differ. The
Hamming weight of a vector « € F", denoted by wt(x), is the number of its nonzero
coordinates. The support of a vector z = (z1, 9, -+, x,) € F", denoted by Supp(z), is
the subset of {1,2,---,n} given by {j|z; # 0}.

A binary 1-perfect code C' of length n is a subset of F”, such that every z € F” is
within distance 1 from exactly one codeword of C'. If we consider distance r # 1 instead
of 1, we have trivial codes, repetition codes, the binary Golay code or equivalents codes to
these ones; so we will henceforth use the word “perfect” to refer specifically to 1-perfect
codes.

The length n of a perfect code is n = 2™ — 1 for some m > 3. The linear perfect codes
exist Ym > 3 and are unique up to isomorphism (they are the well-known Hamming
codes).
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A I-perfect partition is a partition of the space F"™ into n+1 perfect codes Cy, C1, ..., C,.
We can assume the zero vector is in Cy and the vectors having a one in the ith coordi-
nate and zeroes elsewhere, e;, are in C;, Vi € {1,...,n}. Given a perfect code C of length
n = 2" —1 we know that there always exists n+1 translates of C, C'+eq, C'+eq,..., C+e,,
that form a 1-perfect partition of F”, we will call this the trivial partition.

Two partitions Cy, C1,...,C, and Dy, D+, ..., D, are isomorphic if there exists a per-
mutation 7 of the coordinates which maps the vectors of each class into the vectors of a
class in the second partition, that is Vj € {1,...,n} D; = 7(C;) for some i € {1,...,n}.
Two partitions Cy, C4,...,C, and Dy, Dy,..., D, are equivalent if there exists a permu-
tation 7 of the coordinates and a translation 7 such that for all classes D; there exists a
class C; such that D; = 7(C;) + 7.

1 Construction of 1-perfect partitions with the switch-
ing technique

Many interesting problems concerning perfect codes remain unsolved. For example, Etzion
and Vardy [1] compiled a list of ten open problems. The last of them is the following:

Space partitions: Given a perfect code C' of length n = 2™ — 1 we know that
there always exist n + 1 translates of C, say Cy, (4, ..., C, with Cy = C, that form
a partition of F". Under which conditions is there another, different, partition of "
into perfect codes Dy, D+, ..., D, with Dy = C?7 Can such partitions be classified
for a given perfect code?

Rifa and Vardy [2] provide a complete answer to the first question. They show that
it is always possible to construct more than one different perfect partition from a given
perfect code.

After this result, Rifa and Vardy reformulate the initial problem to ask about not
only different partitions of space into perfect codes, but about non-isomorphic and non-
equivalent partitions. They prove that it is always possible to construct more than one
different and non-equivalent perfect partition from a given perfect code.

We will generalize the problem by starting not only from trivial partitions, but from
any partition C'x ey, C'xeq,..., Cxe,, where Cxeq= C and for all x € C, x xe; is the
only vector in class C * ¢; at distance one apart from z [3] (if = *e; = x + ¢;, we have the
trivial partition). The problem is now the following:

Space partitions: Given a perfect code C' of length n = 2™ — 1 and a 1-perfect
partition (not necessary the trivial one) of F", Cy,C,...,C, with Cy = C. Un-
der which conditions is there another, different partition of F™ into perfect codes
Dy, Dy, ..., D, with Dy = C'?7 Can such partitions be classified for a given perfect
code?



From a given partition we will show that with some restrictions we can construct
another, different partition of F”. To show that, we will generalize the Solov’eva-Phelps’
switching technique [4]-[5] to construct two new perfect codes. First of all we take two
classes C' and C * e; of the partition and define a graph (V, E) in C' by V =C

d(z,y) =3

E
(x7y)€ <:>{d(x7y*ei):QOTd(y,x*€i>:2

Let S C C be a connected component in the above graph, and let S’ C C * ¢;, be the
subset in C x ¢; defined by 8" = {x x¢;, Vo € S}. If we switch S and §’, we define
classes D = (C\S)U S’ and H = D xe;.

Lemma 1 If C is a perfect code, D = (C\S)US" and H are perfect codes.

Proof: By construction, it is enough to prove that the minimum distance in D is 3.

In D, there are elements that belong to C' or to S’, and in these sets we know that
the minimum distance is 3, because C' and C x ¢; O S’ are perfect codes.

Let y € C\S. We suppose that d(y, z) < 2 for some z = zxe; € S’, where x € S C C,
that is the only element in C' x e; that d(z,z) = 1. If d(y,z) = 0, y = x * e; but then
y ¢ C. Ifd(y,z) =1, then d(z,y) < 2 because d(z,z) = 1 but this is not possible because
x,y € C. So, d(y,z) = 2, and then d(x,y) = 3. In this case, there is an edge between x
and y, so y € S but y € C\S.

By the same way, we can prove H is a perfect code.

Let A the partition C, C *xeq,..., C x e, and B the partition D, C *xeq,..., C %
€i—1, D*ei, C*€i+17---7 O*Gn.

Proposition 2 If the graph (V, E) has more than one connected component for some
i€ {l,...,n}, the partitions A and B are different.

Proof: The partitions A and B are different because the new classes D and H are
different from C' and C xe;.

It is not always possible to obtain a different partition with this construction. The
problem is that there exist partitions of F” such that Vi € {1,...,n} the graph has only
one connected component. For example, for F”, the following partition [6]:

C =[1,8,26, 31,44, 45, 51, 54, 75, 78, 84, 85, 98, 103, 121, 128 |

Cxep =2, 11, 23, 30, 37, 48, 52, 57, 72, 77, 81, 92, 99, 106, 118, 127 |

C ey =13, 16,18, 29, 38, 41, 55, 60, 69, 74, 88, 91, 100, 111, 113, 126 ]

Cxes=|5,12, 24, 25, 35, 46, 50, 63, 66, 79, 83, 94, 104, 105, 117, 124 |

Cxey=16,9,19, 32, 36, 47, 53, 58, 71, 76, 82, 93, 97, 110, 120, 123 |
Cxes=7,14, 17, 28, 34, 43, 56, 61, 68, 73, 86, 95, 101, 112, 115, 122 |
C xeg = [ 10, 15, 20, 21, 33, 40, 59, 62, 67, 70, 89, 96, 108, 109, 114, 119 ]
Cxer=[ 4,13, 22, 27, 39, 42, 49, 64, 65, 80, 87, 90, 102, 107, 116, 125 |

where the binary vectors are represented in base 10 begining with 1, that is, the (0,0, 0,0, 0,0, 0)
is 1, (1,0,0,0,0,0,0) is 2, ...



2 Distance-preserving, 1-perfect partitions on the n-
cube (Z/2)"

Definition 3 Given a 1-perfect partition Cy, C1,...,C,. For every v € F™ we can define
a permutation m, on the coordinate set {1,2,... ,n}, in the following way:

mp(€e;) = e;, where v+ e; is the only element in coset Cy at distance 1 from v and Cj,
15 the coset where there is the element es + e;, and e is the leader in the coset of v.

Proposition 4 m, is a permutation on the coordinate set {1,2,...,n} and 7y = Id.

Proof: Suppose m,(e;) = m,(e;). If e, is the leader in the coset of vector v, the former
assumption means that e; 4+ ¢; and e, + e; are in the same coset and this is only possible
if i = j, so m, is a permutation on the coordinate set {1,2,...,n}.

Now assume my(e;) = e;. This means that e; is in the coset of e; and this is only
possible if e; = ¢;. 1

Definition 5 Given a 1-perfect partition we can define the associated m-operation on
F™ as:

vk w = v+ my(w) (1)

Definition 6 A I-perfect partition, C, Cy, Cy, ..., C,, is k-distance-preserving if for
any v,w € F" and any vector s € F" of weight k, we have d(v,w) = d(v * s, w * s).

Remark that the elements v * s i w * s does not have necessarily to be in the same
class. In the affirmative case the partition would become a uniform partition and the
classes would be propelinear codes [7].

Definition 7 We will say that a 1-perfect partition C, Cy, Cs, ..., C,, is distance-
preserving, if it is k-distance preserving, for all k.

Proposition 8 Let C, C, Cs, ..., C,, be a distance-preserving, 1-perfect partition. For
all v € F™, the permutation m, is an involution and the order of v is 2 or 4.

Proof: Notice that if e; € Supp(v) and m,(e;) = e; # e;, then e; ¢ Supp(v) because, if
it no were in this way d(v,0) = d(v * €;,0 * ¢;) = wt(v + m,(e;) + €;) = wt(v) — 2.

Also notice if e; ¢ Supp(v) and m,(e;) = e; # e;, then e; € Supp(v).

If e; # e; = m,(e;) and e; # e, = m,(e;) , we will see that d(v,0) = d(v * (e; +€;),0 *
(e; +€5)) = wt(v +e; + € + ¢j + ex) # wt(v), because e; and ej, are two both either in
the support of v or out of it.

Definition 9 A binary operation x on F™ is distance-compatible if Vo, w € F™ and Vi €

{1,...,n}
(i) d(vxe;,v)=1
(ii) Oxv=wv



(11i) vxe; =wke; S v=uw

Proposition 10 Given a 1-perfect partition, the associated w-operation on F" is distance-
compatible.

Proof: The first and second part is trivial because we have the m-operation defined
in (1).
For the third part, assume v e; = wxe;, now v +w = m,(e;) + my(e;), so either v = w
or d(v,w) = 2. We can write vectors v and w as v = c¢*xe; and w = ' x¢;, where ¢, ¢ € C.
But vke; and w*e; are in the same class (in fact, both elements are equals), so e; +e¢;
ie; + ¢ are in the same class too and e; = ¢;. This means that v and w are in the same
class (the class where the element e; belongs) and, so, d(v,w) =0 and v = w.

Proposition 11 Given a distance-preserving, 1-perfect partition, the associated w-operation
defines a distance-compatible quasigroup, of exponent 2 or 4, in F".

Proof: First we will prove that F” has a quasigroup structure with the m-operation. For
this we only need to show that sxv =sxw =v=wand vxs=wx*s = v =w.

1: sxv=sxw=s+7mv) =5+ m5(w) = 7m5(v) = 7m5(w) = v=w

2: Suppose that v * s = w * s and then, as the partition is distance-preserving,
d(v,w) =d(v*s,w*Ss), s0v=w.

Now, from Proposition 8, the order of all the elements in F" is 2 or 4.

Remark 12 We will say m-quasigroup a distance-compatible quasigroup.
All the previous propositions leads us to consider m-group or w-quasigroup operations
(abelians or not) of exponent 2 or 4, defined in a set from which C be a subset.

One important thing to be proved is that isomorphic m-quasigroups give rise to isomor-
phic (or equivalent) distance-preserving partitions and vice versa.

In this way the classification of all the possible 1-perfect, distance-preserving, partitions
1s replaced by the classification of all the w-quasigroup structures of exponent 2 or 4.

Let Q = {Cy,...,C,} and Q' = {C{,...,C.} be two binary distance-preserving 1-
perfect partitions of length n. For any vector v, let m, be the associated permutation
induced by € and let A, be the associated permutation induced by €2'.

For any pair of vectors v, w € F", we define the operations % and L such that:

vkw = v+ m(w)
vlw = v+ A (w)

Now, we consider the two loop (quasigroup with identity element) structures on the
n-cube, (F" %) and (F", 1).

Lemma 13 If Q and Q' are isomorphic, then
Ay = 0 0 To-1(y) O ol YveF”

where o is the coordinate permutation such that o(€) = €.



Proof: Without loss of generality, we may assume that o(C;) = C/, for all i = 0,...,n.
Now, for any vector v € C}, we have that if

vile;=v+A(e) =u

then u must be in the class C}, which contains o(e;) + e;. Hence
o7 (v) + 0 (Nu(o(er))) = 07 (u) (2)

where ¢ = 07 (e;), o7 (v) € C;, 07 (u) € Cy, and d(o(v),07 (u)) = 1. Also, we have
that the class C}, contains e; + e¢,. Thus, it is clear that

o (v)xeg =0 (u) = 07 (V) + T (er) = 0 (u) (3)
Now, from equations 2 and 3 we have that
To-1)(e0) = 07 (Ao (er)))
as this result holds for all £ =0,...,n, we obtain
0 O Mg—1(y) O o=\,
1

Theorem 14 Let Q and €Y be two distance-preserving 1-perfect partitions of length n and
let (F™, %) and (F™, L) be the two induced loops, respectively, as before. Then Q and
are isomorphic if and only if (F™, %) and (F™, L) are isomorphic.

Proof: Suppose that ' = ¢(Q). We will prove that the bijection o : F* — F" is a
loop morphism:

(i) 0(0) = 0, thus ¢ maps the identity element of (F",x) to the identity element of
(F", 1).

(ii) For all z,y € F", we have
o@xy) = ol@+m(y)) =0()+0(Te10@) (0 (0(y))))
= 0(2) + (00 Ty-1(5()) 0 0 )(0(y))

Now, using Lemma 13 we have
o(xxy) = 0(x) + Mgy (0(y)) = o(z) L o(y)

Conversely, assume that o is a loop isomorphism between (F”, ) and (F", L). Clearly
we may write Q = {Cyxe;}7, and Q' = {C] L e;},, where the classes Cy and C{, contain
the all-zero vector. Now, we have that any class C{) L e; € Q' can be described as

(o7 (Cp)) L a(o™(e;)) = a(o7(Cp) * o7 (e5)) = o(Ci  ex)
for some k € {0,...,n}. Hence ' = o ().

The following question is how to relate the quasigroups when the partitions are equiv-
alent.



Definition 15 Let a € F" then we define the application p.(x) = x 4+ a in F*. We can
write oo () = Q' if . (C;) = C! for i =0,...,n.

Lemma 16 Let a € F". If p,(2) = ', then
(1) wa(v*e;)=(v+a)Lld.
(i) my(ei) = Apraldi).
where d; is the leader in C! and v € C = (.

Proof: Let C' = {vg,v1,...,v.} then C; = C xe; = {vg *e;, ..., 0. xe;}
Ci=Avo+a,...,u.+a},and C! ={(vg+a) L d;,...,(v,+a) Ld;}

(i) Fori e {0,...,n}, j € {0,...,7} (v; *¢;) + a € C, therefore, Jv;; € C such that
(vj x€;) +a = (v;; +a) L d;. We will prove that v;; = v;:
(vj*e;) +a=(vy; +a)Ld,
v + Ty (€5) + a = vij + a+ Ay, 4a)(di)
v+ Ty, (€5) = Vij + Ay +a)(di)
= d(v; + m;)(e;),vij) = 1
= d(vj,v;;) =0or 2

but, if v; # v;; then d(v;,v;;) > 3, so d(vj,v;; = 0) and v; = v;; .

Now we have (v; *¢;) +a = (v; +a) L d; = p.(v; xe;) = (v; +a) L d; forv; € C.

(ii) Let v; € C,i e {1,...,n} and let v = v; x ¢; € C;. Using the part (i) we have

v+ a= @, (v) = pa(vj xe;) = (vj +a) Ldi =vj +a+ Ap,1a)(ds)

So v = v + Aw;+a)(di). Also we know that v = v; * ¢; = v; + 7y, (e;). Thus, it is
clear that 7, (€;) = Ay, +a)(di).

We have seen that m,(e;) = Ayia(d;), with v € C' = Cy. 0 € C, then m(e;) = Ao(dy)
= €, = Aa(di), and d; = )\;1(61‘).

Lemma 17 Let a € F". If ¢,(Q) = ', then
va(vxe)=(v+a)Ld;

where d; is the leader in C! and v € F™.



Proof: Let v € F™ and e, leader in the class of v.

vxe; =u

where u belongs to the class containing ej, + e; and d(v,u) = 1.

a(v* &) = Pa(u)

If we proof m,(e;) = A\y1a(d;) then:

vk e =u,
v+ m,(e;) = u,
U+ Atalds) = u,
(v +a) + Aoyal(di) = v +a,
(v+a) Ld; =@q(u),
(v+a) Ld;=@pa(v*e).

So, to prove the Lemma, we only have to see that m,(e;) = Ayq(d;) for v € F™.
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