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Abstract

We will study 1-perfect partitions, some of their constructions and the alge-
braic structures related to them. We will see the ways of constructing 1-perfect
partitions on the n-cube (Z/2)n by using a generalized Slov’eva-Phelps’ switching
technique. For each 1-perfect distance-preserving partition we can define an asso-
ciated operation such that Fn becomes distance-compatible quasigroup. We relate
the quasigroups associated to isomorphic or equivalent distance-preserving 1-perfect
partitions.
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Introduction

Let Fn be a vector space of dimension n over Z/2. The Hamming distance between vectors
x, y ∈ Fn, denoted by d(x, y), is the number of coordinates in which x and y differ. The
Hamming weight of a vector x ∈ Fn, denoted by wt(x), is the number of its nonzero
coordinates. The support of a vector x = (x1, x2, · · · , xn) ∈ Fn, denoted by Supp(x), is
the subset of {1, 2, · · · , n} given by {j|xj 6= 0}.

A binary 1-perfect code C of length n is a subset of Fn, such that every x ∈ Fn is
within distance 1 from exactly one codeword of C. If we consider distance r 6= 1 instead
of 1, we have trivial codes, repetition codes, the binary Golay code or equivalents codes to
these ones; so we will henceforth use the word “perfect” to refer specifically to 1-perfect
codes.

The length n of a perfect code is n = 2m− 1 for some m ≥ 3. The linear perfect codes
exist ∀m ≥ 3 and are unique up to isomorphism (they are the well-known Hamming
codes).
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A 1-perfect partition is a partition of the space Fn into n+1 perfect codes C0, C1, . . . , Cn.
We can assume the zero vector is in C0 and the vectors having a one in the ith coordi-
nate and zeroes elsewhere, ei, are in Ci, ∀i ∈ {1, . . . , n}. Given a perfect code C of length
n = 2m−1 we know that there always exists n+1 translates of C, C+e0, C+e1, . . . , C+en,
that form a 1-perfect partition of Fn, we will call this the trivial partition.

Two partitions C0, C1, . . . , Cn and D0, D1, . . . , Dn are isomorphic if there exists a per-
mutation π of the coordinates which maps the vectors of each class into the vectors of a
class in the second partition, that is ∀j ∈ {1, . . . , n} Dj = π(Ci) for some i ∈ {1, . . . , n}.
Two partitions C0, C1, . . . , Cn and D0, D1, . . . , Dn are equivalent if there exists a permu-
tation π of the coordinates and a translation τ such that for all classes Dj there exists a
class Ci such that Dj = π(Ci) + τ .

1 Construction of 1-perfect partitions with the switch-

ing technique

Many interesting problems concerning perfect codes remain unsolved. For example, Etzion
and Vardy [1] compiled a list of ten open problems. The last of them is the following:

Space partitions: Given a perfect code C of length n = 2m − 1 we know that
there always exist n+ 1 translates of C, say C0, C1, . . . , Cn with C0 = C, that form
a partition of Fn. Under which conditions is there another, different, partition of Fn

into perfect codes D0, D1, . . . , Dn with D0 = C? Can such partitions be classified
for a given perfect code?

Rifà and Vardy [2] provide a complete answer to the first question. They show that
it is always possible to construct more than one different perfect partition from a given
perfect code.

After this result, Rifà and Vardy reformulate the initial problem to ask about not
only different partitions of space into perfect codes, but about non-isomorphic and non-
equivalent partitions. They prove that it is always possible to construct more than one
different and non-equivalent perfect partition from a given perfect code.

We will generalize the problem by starting not only from trivial partitions, but from
any partition C ∗ e0, C ∗ e1, . . . , C ∗ en, where C ∗ e0 = C and for all x ∈ C, x ∗ ei is the
only vector in class C ∗ ei at distance one apart from x [3] (if x ∗ ei = x+ ei, we have the
trivial partition). The problem is now the following:

Space partitions: Given a perfect code C of length n = 2m − 1 and a 1-perfect
partition (not necessary the trivial one) of Fn, C0, C1, . . . , Cn with C0 = C. Un-
der which conditions is there another, different partition of Fn into perfect codes
D0, D1, . . . , Dn with D0 = C? Can such partitions be classified for a given perfect
code?
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From a given partition we will show that with some restrictions we can construct
another, different partition of Fn. To show that, we will generalize the Solov’eva-Phelps’
switching technique [4]-[5] to construct two new perfect codes. First of all we take two
classes C and C ∗ ei of the partition and define a graph (V,E) in C by V = C

(x, y) ∈ E ⇔
{

d(x, y) = 3

d(x, y ∗ ei) = 2 or d(y, x ∗ ei) = 2

Let S ⊂ C be a connected component in the above graph, and let S ′ ⊂ C ∗ ei, be the
subset in C ∗ ei defined by S ′ = {x ∗ ei, ∀x ∈ S}. If we switch S and S ′, we define
classes D = (C\S) ∪ S ′ and H = D ∗ ei.

Lemma 1 If C is a perfect code, D = (C\S) ∪ S ′ and H are perfect codes.

Proof: By construction, it is enough to prove that the minimum distance in D is 3.
In D, there are elements that belong to C or to S ′, and in these sets we know that

the minimum distance is 3, because C and C ∗ ei ⊇ S ′ are perfect codes.
Let y ∈ C\S. We suppose that d(y, z) ≤ 2 for some z = x ∗ ei ∈ S ′, where x ∈ S ⊂ C,

that is the only element in C ∗ ei that d(x, z) = 1. If d(y, z) = 0, y = x ∗ ei but then
y 6∈ C. If d(y, z) = 1, then d(x, y) ≤ 2 because d(z, x) = 1 but this is not possible because
x, y ∈ C. So, d(y, z) = 2, and then d(x, y) = 3. In this case, there is an edge between x
and y, so y ∈ S but y ∈ C\S.

By the same way, we can prove H is a perfect code.

Let A the partition C, C ∗ e1, . . . , C ∗ en and B the partition D, C ∗ e1, . . . , C ∗
ei−1, D ∗ ei, C ∗ ei+1, . . . , C ∗ en.

Proposition 2 If the graph (V,E) has more than one connected component for some
i ∈ {1, . . . , n}, the partitions A and B are different.

Proof: The partitions A and B are different because the new classes D and H are
different from C and C ∗ ei.

It is not always possible to obtain a different partition with this construction. The
problem is that there exist partitions of Fn such that ∀i ∈ {1, . . . , n} the graph has only
one connected component. For example, for F7, the following partition [6]:

C = [ 1, 8, 26, 31, 44, 45, 51, 54, 75, 78, 84, 85, 98, 103, 121, 128 ]
C ∗ e1 = [ 2, 11, 23, 30, 37, 48, 52, 57, 72, 77, 81, 92, 99, 106, 118, 127 ]
C ∗ e2 = [ 3, 16, 18, 29, 38, 41, 55, 60, 69, 74, 88, 91, 100, 111, 113, 126 ]
C ∗ e3 = [ 5, 12, 24, 25, 35, 46, 50, 63, 66, 79, 83, 94, 104, 105, 117, 124 ]
C ∗ e4 = [ 6, 9, 19, 32, 36, 47, 53, 58, 71, 76, 82, 93, 97, 110, 120, 123 ]
C ∗ e5 = [ 7, 14, 17, 28, 34, 43, 56, 61, 68, 73, 86, 95, 101, 112, 115, 122 ]
C ∗ e6 = [ 10, 15, 20, 21, 33, 40, 59, 62, 67, 70, 89, 96, 108, 109, 114, 119 ]
C ∗ e7 = [ 4, 13, 22, 27, 39, 42, 49, 64, 65, 80, 87, 90, 102, 107, 116, 125 ]

where the binary vectors are represented in base 10 begining with 1, that is, the (0, 0, 0, 0, 0, 0, 0)
is 1, (1, 0, 0, 0, 0, 0, 0) is 2, . . .
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2 Distance-preserving, 1-perfect partitions on the n-

cube (Z/2)n

Definition 3 Given a 1-perfect partition C0, C1, . . . , Cn. For every v ∈ Fn we can define
a permutation πv on the coordinate set {1, 2, . . . , n}, in the following way:

πv(ei) = ej, where v + ej is the only element in coset Ck at distance 1 from v and Ck
is the coset where there is the element es + ei, and es is the leader in the coset of v.

Proposition 4 πv is a permutation on the coordinate set {1, 2, . . . , n} and π0 = Id.

Proof: Suppose πv(ei) = πv(ej). If es is the leader in the coset of vector v, the former
assumption means that es + ei and es + ej are in the same coset and this is only possible
if i = j, so πv is a permutation on the coordinate set {1, 2, . . . , n}.

Now assume π0(ei) = ej. This means that ej is in the coset of ei and this is only
possible if ei = ej.

Definition 5 Given a 1-perfect partition we can define the associated π-operation on
F
n as:

v ∗ w = v + πv(w) (1)

Definition 6 A 1-perfect partition, C, C1, C2, . . ., Cn, is k-distance-preserving if for
any v, w ∈ Fn and any vector s ∈ Fn of weight k, we have d(v, w) = d(v ∗ s, w ∗ s).

Remark that the elements v ∗ s i w ∗ s does not have necessarily to be in the same
class. In the affirmative case the partition would become a uniform partition and the
classes would be propelinear codes [7].

Definition 7 We will say that a 1-perfect partition C, C1, C2, . . ., Cn, is distance-
preserving, if it is k-distance preserving, for all k.

Proposition 8 Let C, C1, C2, . . ., Cn, be a distance-preserving, 1-perfect partition. For
all v ∈ Fn, the permutation πv is an involution and the order of v is 2 or 4.

Proof: Notice that if ei ∈ Supp(v) and πv(ei) = ej 6= ei, then ej /∈ Supp(v) because, if
it no were in this way d(v, 0) = d(v ∗ ei, 0 ∗ ei) = wt(v + πv(ei) + ei) = wt(v)− 2.

Also notice if ei /∈ Supp(v) and πv(ei) = ej 6= ei, then ej ∈ Supp(v).
If ei 6= ej = πv(ei) and ej 6= ek = πv(ej) , we will see that d(v, 0) = d(v ∗ (ei + ej), 0 ∗

(ei + ej)) = wt(v + ei + ej + ej + ek) 6= wt(v), because ei and ek are two both either in
the support of v or out of it.

Definition 9 A binary operation ∗ on Fn is distance-compatible if ∀v, w ∈ Fn and ∀i ∈
{1, . . . , n}

(i) d(v ∗ ei, v) = 1

(ii) 0 ∗ v = v

4



(iii) v ∗ ei = w ∗ ei ⇔ v = w

Proposition 10 Given a 1-perfect partition, the associated π-operation on Fn is distance-
compatible.

Proof: The first and second part is trivial because we have the π-operation defined
in (1).

For the third part, assume v ∗ ei = w ∗ ei, now v+w = πv(ei) +πw(ei), so either v = w
or d(v, w) = 2. We can write vectors v and w as v = c∗ ej and w = c′ ∗ el, where c, c′ ∈ C.

But v ∗ ei and w ∗ ei are in the same class (in fact, both elements are equals), so ei+ ej
i ei + el are in the same class too and ej = el. This means that v and w are in the same
class (the class where the element ej belongs) and, so, d(v, w) = 0 and v = w.

Proposition 11 Given a distance-preserving, 1-perfect partition, the associated π-operation
defines a distance-compatible quasigroup, of exponent 2 or 4, in Fn.

Proof: First we will prove that Fn has a quasigroup structure with the π-operation. For
this we only need to show that s ∗ v = s ∗ w ⇒ v = w and v ∗ s = w ∗ s⇒ v = w.

1: s ∗ v = s ∗ w ⇒ s+ πs(v) = s+ πs(w)⇒ πs(v) = πs(w)⇒ v = w
2: Suppose that v ∗ s = w ∗ s and then, as the partition is distance-preserving,

d(v, w) = d(v ∗ s, w ∗ s), so v = w.
Now, from Proposition 8, the order of all the elements in Fn is 2 or 4.

Remark 12 We will say π-quasigroup a distance-compatible quasigroup.
All the previous propositions leads us to consider π-group or π-quasigroup operations

(abelians or not) of exponent 2 or 4, defined in a set from which C be a subset.

One important thing to be proved is that isomorphic π-quasigroups give rise to isomor-
phic (or equivalent) distance-preserving partitions and vice versa.

In this way the classification of all the possible 1-perfect, distance-preserving, partitions
is replaced by the classification of all the π-quasigroup structures of exponent 2 or 4.

Let Ω = {C0, . . . , Cn} and Ω′ = {C ′0, . . . , C ′n} be two binary distance-preserving 1-
perfect partitions of length n. For any vector v, let πv be the associated permutation
induced by Ω and let λv be the associated permutation induced by Ω′.

For any pair of vectors v, w ∈ Fn, we define the operations ∗ and ⊥ such that:

v ∗ w = v + πv(w)

v ⊥ w = v + λv(w)

Now, we consider the two loop (quasigroup with identity element) structures on the
n-cube, (Fn, ∗) and (Fn,⊥).

Lemma 13 If Ω and Ω′ are isomorphic, then

λv = σ ◦ πσ−1(v) ◦ σ−1 ∀v ∈ Fn

where σ is the coordinate permutation such that σ(Ω) = Ω′.
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Proof: Without loss of generality, we may assume that σ(Ci) = C ′i, for all i = 0, . . . , n.
Now, for any vector v ∈ C ′i, we have that if

v ⊥ ej = v + λv(ej) = u

then u must be in the class C ′k which contains σ(ei) + ej. Hence

σ−1(v) + σ−1(λv(σ(e`))) = σ−1(u) (2)

where ` = σ−1(ej), σ
−1(v) ∈ Ci, σ−1(u) ∈ Ck and d(σ−1(v), σ−1(u)) = 1. Also, we have

that the class Ck contains ei + e`. Thus, it is clear that

σ−1(v) ∗ e` = σ−1(u) =⇒ σ−1(v) + πσ−1(v)(e`) = σ−1(u) (3)

Now, from equations 2 and 3 we have that

πσ−1(v)(e`) = σ−1(λv(σ(e`)))

as this result holds for all ` = 0, . . . , n, we obtain

σ ◦ πσ−1(v) ◦ σ−1 = λv

Theorem 14 Let Ω and Ω′ be two distance-preserving 1-perfect partitions of length n and
let (Fn, ∗) and (Fn,⊥) be the two induced loops, respectively, as before. Then Ω and Ω′

are isomorphic if and only if (Fn, ∗) and (Fn,⊥) are isomorphic.

Proof: Suppose that Ω′ = σ(Ω). We will prove that the bijection σ : Fn −→ F
n is a

loop morphism:

(i) σ(0) = 0, thus σ maps the identity element of (Fn, ∗) to the identity element of
(Fn,⊥).

(ii) For all x, y ∈ Fn, we have

σ(x ∗ y) = σ(x+ πx(y)) = σ(x) + σ(πσ−1(σ(x))(σ
−1(σ(y))))

= σ(x) + (σ ◦ πσ−1(σ(x)) ◦ σ−1)(σ(y))

Now, using Lemma 13 we have

σ(x ∗ y) = σ(x) + λσ(x)(σ(y)) = σ(x) ⊥ σ(y)

Conversely, assume that σ is a loop isomorphism between (Fn, ∗) and (Fn,⊥). Clearly
we may write Ω = {C0∗ei}ni=0 and Ω′ = {C ′0 ⊥ ei}ni=0, where the classes C0 and C ′0 contain
the all-zero vector. Now, we have that any class C ′0 ⊥ ej ∈ Ω′ can be described as

σ(σ−1(C ′0)) ⊥ σ(σ−1(ej)) = σ(σ−1(C ′0) ∗ σ−1(ej)) = σ(C0 ∗ ek)

for some k ∈ {0, . . . , n}. Hence Ω′ = σ(Ω).

The following question is how to relate the quasigroups when the partitions are equiv-
alent.
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Definition 15 Let a ∈ Fn then we define the application ϕa(x) = x + a in Fn. We can
write ϕa(Ω) = Ω′ if ϕa(Ci) = C ′i for i = 0, . . . , n.

Lemma 16 Let a ∈ Fn. If ϕa(Ω) = Ω′, then

(i) ϕa(v ∗ ei) = (v + a) ⊥ di.

(ii) πv(ei) = λv+a(di).

where di is the leader in C ′i and v ∈ C = C0.

Proof: Let C = {v0, v1, . . . , vr} then Ci = C ∗ ei = {v0 ∗ ei, . . . , vr ∗ ei}
C ′0 = {v0 + a, . . . , vr + a}, and C ′i = {(v0 + a) ⊥ di, . . . , (vr + a) ⊥ di}

(i) For i ∈ {0, . . . , n}, j ∈ {0, . . . , r} (vj ∗ ei) + a ∈ C ′i, therefore, ∃ vij ∈ C such that
(vj ∗ ei) + a = (vij + a) ⊥ di. We will prove that vij = vj:

(vj ∗ ei) + a = (vij + a) ⊥ di

vj + πvj(ei) + a = vij + a+ λ(vij+a)(di)

vj + πvj(ei) = vij + λ(vij+a)(di)

⇒ d(vj + π(vj)(ei), vij) = 1

⇒ d(vj, vij) = 0 or 2

but, if vj 6= vij then d(vj, vij) ≥ 3, so d(vj, vij = 0) and vj = vij .

Now we have (vj ∗ ei) + a = (vj + a) ⊥ di ⇒ ϕa(vj ∗ ei) = (vj + a) ⊥ di for vj ∈ C.

(ii) Let vj ∈ C, i ∈ {1, . . . , n} and let v = vj ∗ ei ∈ Ci. Using the part (i) we have

v + a = ϕa(v) = ϕa(vj ∗ ei) = (vj + a) ⊥ di = vj + a+ λ(vj+a)(di)

So v = vj + λ(vj+a)(di). Also we know that v = vj ∗ ei = vj + πvj(ei). Thus, it is
clear that πvj(ei) = λ(vj+a)(di).

We have seen that πv(ei) = λv+a(di), with v ∈ C = C0. 0 ∈ C, then π0(ei) = λa(di)
⇒ ei = λa(di), and di = λ−1

a (ei).

Lemma 17 Let a ∈ Fn. If ϕa(Ω) = Ω′, then

ϕa(v ∗ ei) = (v + a) ⊥ di

where di is the leader in C ′i and v ∈ Fn.
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Proof: Let v ∈ Fn and ek leader in the class of v.

v ∗ ei = u

where u belongs to the class containing ek + ei and d(v, u) = 1.

ϕa(v ∗ ei) = ϕa(u)

If we proof πv(ei) = λv+a(di) then:
v ∗ ei = u,

v + πv(ei) = u,

v + λv+a(di) = u,

(v + a) + λv+a(di) = u+ a,

(v + a) ⊥ di = ϕa(u),

(v + a) ⊥ di = ϕa(v ∗ ei).

So, to prove the Lemma, we only have to see that πv(ei) = λv+a(di) for v ∈ Fn.
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