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Abstract

A binary extended 1-perfect code of length n + 1 = 2t is additive if it

is a subgroup of Zα
2 × Zβ

4 . The punctured code by deleting a Z2 coordinate

(if there is someone) gives a perfect additive code. 1-Perfect additive codes

were completely characterized in [1] and by using that characterization we

compute the possible parameters k, rank and dimension of the kernel for

extended 1-perfect additive codes. A very special case is that of extended

1-perfect Z4-linear codes.

1 Introduction

Let F = Z/2 and let F n denote the set of all binary vectors of length n. Let ? be a

binary operation such that (F n, ?) is a translation invariant abelian group, that is,

a group with the property that

d(x ? v, x ? u) = d(v, u) ∀x, v, u ∈ F n

As can be seen in [1], (F n, ?) ∼= (Zα
2 ×Zβ

4 ,+) where α+2β = n. An isomorphism

between Zα
2 × Zβ

4 and F n is given by the map

Φ(x1, . . . , xα | y1, . . . , yβ) = (x1, . . . , xα | φ(y1), . . . , φ(yβ))
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Barcelona, 08193-Bellaterra, Spain. E-mail: {joaquim.borges,josep.rifa}@uab.es

1



where φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1) and φ(3) = (1, 0) is the usual Gray

map from Z4 onto Z2
2. Now, it is clear that

x ? y = Φ(Φ−1(x) + Φ−1(y)) ∀x, y ∈ F n.

A (binary) additive code (see [1], [2]) (C, ?) of length n is a subgroup of (F n, ?).

For the rest of the paper we assume that all codes are binary. An additive code

is a particular case of the more general class of translation-invariant propelinear

codes [5] and [1]. Note that the case β = 0 corresponds to a linear code and the

case α = 0 corresponds to a Z4-linear code. The single-error correcting perfect

additive codes (or 1-perfect additive codes) were completely characterized in [1]. In

this case, there is exactly one 1-perfect additive code of length n = 2t − 1, up to

coordinate permutation, for any r such that 2 ≤ r ≤ t ≤ 2r, where α = 2r − 1 and

β = 2t−1 − 2r−1.

We will refer to the group of coordinate permutations π : C → C as Aut(C),

the automorphism group of the code. Define C⊥ as the dual of the span of C and

the kernel of code C as K = {a ∈ C| a+ C = C}. In this paper we study extended

1-perfect additive codes, we compute some invariants, namely, the rank (dimension

of the linear span of the code) and dimension of the kernel (set of vectors that

leave invariant the code under translation). We put special attention to the case of

extended perfect Z4-linear codes.

The paper is organized as follows. In Section 2 we give a characterization for

extended 1-perfect additive codes in the non Z4-linear case and we compute the rank

and the kernel. In Section 3 we do the same for the special case of Z4-linear codes.

2 Extended 1-perfect additive non Z4-linear codes

Let C be a binary additive code, that is to say (C, ?) is a subgroup of (Zα
2 ×Zβ

4 ,+),

where + means the usual additive operation on Z2 and Z4. Code C has length

n = α + 2β as a binary code, after doing the Gray map in its Z4 coordinates. We

say that C is an additive code of type (α, β).

Theorem 2.1 If C∗ is an extended 1-perfect additive code of length n+1 = 2t, then

it is of type (α+ 1, β), where either α+ 1 = 0 or α = 2r − 1, 2 ≤ r ≤ t ≤ 2r.
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Proof: Recall from [1] that any 1-perfect additive code of length n = 2t − 1 ≥ 15

is of type (2r − 1, 2t−1− 2r−1), where 2 ≤ r ≤ t ≤ 2r. If C∗ has Z2 coordinates then

puncture it in one of these coordinates preserves the additive structure. Conversely,

the gray map preserves parity so adding a parity check bit just increases the number

of Z2 coordinates.

Corollary 2.2 For any r and t ≥ 4 such that 2 ≤ r ≤ t ≤ 2r there is exactly

one extended 1-perfect additive code C∗ of type (2r, 2t−1 − 2r−1), up to coordinate

permutation.

Proof: The statement follows directly from the previous theorem and the unique-

ness of 1-perfect additive codes (see [1]).

Now, given an extended 1-perfect additive code C∗ we compute its rank r(C∗)

and dimension of the kernel K(C∗).

Theorem 2.3 Let C∗ be an extended 1-perfect additive code of type (2r, 2t−1−2r−1),

where t > 3, then

(i) dim(K(C∗)) = 2r−1 + 2t−1 − r if t 6= r and dim(K(C∗)) = 2r − r − 1 if t = r.

(ii) r(C∗) = 2t − r − 1.

Proof: Let C be the 1-perfect additive code obtained by puncturing a Z2 coordi-

nate. Let x ∈ C and let x∗ denote the word x with a parity check bit. It is clear

that x ∈ K(C) if and only if x∗ ∈ K(C∗). Also, x ∈< C > if and only if x ∈< C∗ >.

Hence the dimension of the kernel and the rank are the same for C∗ and for C. The

values for C are stated in [4] and are those of the statement.

For any allowable parameter r and t, code C∗ could be seen as the kernel of a

group homomorphism:

Fn = Zα+1
2 × Zβ

4
θ−−−→ Zγ

2 × Zδ
4

where: α+ 1 = 2r; β = 2t−1 − 2r−1; γ = 2r − t+ 1; δ = t− r.
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This previous homomorphism could be represented by a matrix like:

←−−− α+ 1 −−−→ ←−−− β −−−→x
γy
x
δy

G =





For instance, in length n = 31 (so t = 5) there are three different pairs of

allowable parameters (see Corollary 2.2): (r = 3, t = 5), (r = 4, t = 5), (r = 5, t = 5)

which give us, respectively, code C1 where γ = 2 and δ = 2; code C2 where γ = 4

and δ = 1; code C3 where γ = 6 and δ = 0.

These three codes are given by the following parity check matrices:

Code C1 is the kernel of the homomorphism F32 = Z8
2 × Z12

4 −→ Z2
2 × Z2

4 which

is given by:

G1 =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 2 2 0 0 2 2 1 1 1 1 0 2 1 1 1 1 0 2

0 2 0 2 0 2 0 2 0 1 2 3 1 1 0 1 2 3 1 1


The rank of this code is 2t − r − 1 = 28 and the dimension of its kernel is

2r−1 + 2t−1 − r = 17.

Code C2 is the kernel of the homomorphism F32 = Z16
2 × Z8

4 −→ Z4
2 × Z4 which

is given by:
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G2 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 1 3 1 3 1 3 1 3


The rank of this code is 2t − r − 1 = 27 and the dimension of its kernel is

2r−1 + 2t−1 − r = 20.

Code C3 is the kernel of the homomorphism F32 = Z32
2 −→ Z6

2 which is given by

the usual parity check matrix for the linear extended Hamming code.

G3 =



1 1 1 1 1 1 1 1 · · · 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 · · · 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 · · · 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 · · · 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 · · · 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 · · · 0 1 0 1 0 1 0 1


The rank of this code is 2t − r − 1 = 26 and the dimension of its kernel is

2r−1 + 2t−1 − r − 1 = 26.

Notice that all these matrices could be used as parity check matrices for the

corresponding codes C1, C2 or C3 and the columns, like in the usual binary extended

Hammimg code, are all the possible independent vectors in {1 ∈ Z2} × Z2 × Z2
4 for

code C1, in {1 ∈ Z2} × Z3
2 × Z4 for code C2 and in {1 ∈ Z2} × Z5

2 for code C3.

Next section is devoted to consider the case in theorem 2.1 when α+ 1 = 0.

3 Extended 1-perfect Z4-linear codes

Let C∗ be an extended 1-perfect additive code of length n+1 = 2t ≥ 16 and of type

(α + 1, β) where α + 1 = 0. In other words, C∗ is a Z4-linear code of binary length

n+ 1 = 2t ≥ 16.

Consider the quotient group F n+1/C∗ which is isomorphic to Zγ
2 × Zδ

4 where

γ + 2δ = t + 1 (because the number of cosets is 2t+1). Clearly, the cosets with

5



leader of weight 1 are elements of order 4 (implying δ ≥ 1), whereas the cosets with

leader of weight 2 are elements of order 2 or 4. Hence the number of solutions of

γ + 2δ = t+ 1 is b(t+ 1)/2c.

Theorem 3.1 Let C∗ be an extended 1-perfect Z4-linear code of binary length n +

1 = 2t ≥ 16, such that F n+1/C∗ is isomorphic to Zt+1−2δ
2 × Zδ

4 for a fixed δ ∈
{1, . . . , b(t+ 1)/2c}. Then C∗ is unique, up to coordinate permutation.

Proof: Let ϑ : F n+1 −→ F n+1/C∗ be the natural projection and let ϕ : F n+1/C∗ −→
Zt+1−2δ

2 ×Zδ
4 be an isomorphism. Put θ = ϕϑ. We have C∗ = Kerθ and if we change

θ by θ′, note that for all i ∈ {1, . . . , n+1}, θ′(ei) = θ(ej) for some j ∈ {1, . . . , n+1}.
This says that Ker θ′ can be obtained as a coordinate permutation of C∗.

Corollary 3.2 For all t ≥ 4, there are exactly b(t + 1)/2c extended 1-perfect Z4-

linear codes of length n+ 1 = 2t.

Proof: This result has been previously stated in [3]. Note that each one of the

nonequivalent codes of length n+ 1 = 2t corresponds to a different quotient groups

Zγ
2 × Zδ

4.

As in the previous case of extended 1-perfect additive non-Z4-linear codes, for any

allowable pair of parameters γ and δ we can construct an extended 1-perfect Z4-linear

code (which is unique up to isomorphism) as the kernel of a group homomorphism:

Fn+1 = Zβ
4

θ−−−−→ Zγ
2 × Zδ

4

where: n+ 1 = 2t; β = 2t−1; t+ 1 = γ + 2δ.

For instance, in case of length n+ 1 = 32 (t = 5) we have three possible pairs of

parameters: (γ = 0, δ = 3) which leads to code D1; (γ = 2, δ = 2) which leads to

code D2 and (γ = 4, δ = 1) which leads to code D3.

Code D1 is the kernel of the homomorphism F32 = Z16
4 −→ Z3

4 which is given by:

G1 =


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3


Code D2 is the kernel of the homomorphism F32 = Z16

4 −→ Z2
2 × Z2

4 which is

given by:
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G2 =


0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3


Code D3 is the kernel of the homomorphism F32 = Z16

4 −→ Z4
2 × Z1

4 which is

given by:

G3 =



0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


Notice that all these matrices could also be used as parity check matrices for

the corresponding codes D1, D2 or D3 and the columns, like in the usual binary

extended Hammimg code, are all the possible independent vectors in Z2
4×{1 ∈ Z4}

for code D1, in Z2
2 × Z4 × {1 ∈ Z4} for code D2 and in Z4

2 × {1 ∈ Z4} for code D3.

So, in general, we can think of the parity check matrix of C∗ as consisting of all

column vectors of the form Zγ
2 × Zδ−1

4 × {1 ∈ Z4}.

Lemma 3.3

Fn+1 = Zβ
4

θ−−−→ Zγ
2 × Zδ

4
τ−−−→ Zγ

2 × Zδ
2 = Zγ+δ

2

ψ = τθ is a linear mapping form the binary linear space Fn+1 to Zγ+δ
2 .

Proof: Let π be any involution involving the two coordinates in some Z4. Let these

coordinates be ei and ei+1. Take v ∈ Fn+1 and note that π(v) = v or π(v) = v?ei?ei.

Then in both cases τ · θ(π(v)) = τ · θ(v).
We can generalize this result by taking any permutation πw associated to vector

w. We know permutation πw is a composition of permutations like π, so τ ·θ(πw(v)) =

τ · θ(v).
Hence, τ · θ(w+ v) = τ · θ(w?πw(v)) = τ · θ(w)+ τ · θ(πw(v)) = τ · θ(w)+ τ · θ(v).
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Lemma 3.4 For all t ≥ 4, < C∗ > ⊆ Ker ψ and for t > 4 or t = 4 and specific

parameters γ = 1, δ = 2 then < C∗> = Ker ψ.

Proof: The first assertion is easy to verify. Ker ψ is generated by vectors of type

(0, 0, . . . , 2, 0, . . . , 0). The only way such a vector belongs to < C∗ > is when there

are two binary codewords of weight 4 with share a unique coordinate. This happens

for all t > 4 and for t = 4 in the specific case γ = 1, δ = 2.

In this last situation the parity check matrix is:

H =


0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3


and the binary codewords (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1) and (1, 0, 0, 0, 0, 1, 0, 0,

0, 1, 0, 0, 1, 0, 0, 0), which can be written by using the Gray map as (1, 3, 0, 0, 0, 1, 0, 3)

and (1, 0, 3, 0, 3, 0, 1, 0), share a unique coordinate, the first one.

Theorem 3.5 Let C∗ be an extended 1-perfect Z4-linear code of binary length n +

1 = 2t > 16 and assume the quotient set is isomorphic to G = Zγ
2 × Zδ

4. Then

rank(C∗) = 2t− t−1+ δ. For the case t = 4, either G = Zt−1
2 ×Z4 and rank(C∗) =

2t − t− 1, i.e. C∗ is linear, or G = Z2 × Z2
4 and rank(C∗) = 2t − t− 1 + 2.

Proof: From lemma 3.4 in the general case | < C∗ > | = |Ker ψ| =
|F n+1|
|Zγ+δ

2 |
=

2n+1−γ−δ = 22t−t−1+δ.

After computing the rank of this kind of codes we are interested in the compu-

tation of the kernel dimension.

Recall that a Z4-linear code C is a translation-invariant propelinear code (see [5]).

Considering such structure, (C, ?) is a group, where each codeword x has associated

a coordinate permutation πx which verifies that x ? y = x + πx(y), for any y ∈ C.

Operation ? can be seen as the additive Z4 operation and πx = (a1a
′
1) · · · (aβa

′
β)

is the product of all involutions involving the two binary coordinates in every Z4

coordinate where x is 1 or 3.

Define Aπ = {z ∈ C∗ | πz = π} and let σ ∈ Sn be the permutation σ =

(a1a
′
1) · · · (aβa

′
β) which is the product of all involutions involving the two coordinates

in every Z4 component. Then σ ∈ Aut(C∗).
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Lemma 3.6 For all x ∈ C∗, the permutation πx is in Aut(C∗) if and only if x is

in the kernel K of C∗.

Proof: Let x, y be in C∗, as C∗ is additive x ? y ∈ C∗ and x + πx(y) ∈ C∗, but

x ∈ K if and only if x+ z ∈ C∗ for all z ∈ C∗.

Lemma 3.7 The Z4-dual code, C∗⊥, of an extended 1-perfect Z4-linear code, C∗, is

a sub-code, i.e. C∗⊥ ⊂ C∗.

Proof: It is straightforward to verify that rows of the parity check matrix are

mutually orthogonal and thus the Z4-dual code, C∗⊥, is a sub-code.

Lemma 3.8 Let C∗ be an extended 1-perfect Z4-linear code. The vectors v ∈ K(C∗)

satisfies the equation 2 ·v ·c ·x = 0 (for all the vectors c ∈ C∗ and x in the Z4 dual of

C∗), where we take the addition in Z4 of the componentwise product in Z4 of three

vectors v, c, x.

Conversely, if 2 · v · c · x = 0 (for all the vectors c ∈ C∗ and x in the Z4 dual of C∗)

and v ∈ C∗ then v ∈ K(C∗) and for v ∈ C∗⊥ then v ∈ K(C∗⊥)

Proof: The vectors v in kernel of C∗ are such that v + c ∈ C∗ for all c ∈ C∗. This

operation + is the binary addition, but if you are using quaternary notation (? is

the quaternary addition) we will have for the elements in Z4: a+b = a?b (if a = 0, 2

or b = 0, 2) or a+ b = a ? b ? 2 (if a = 1, 3 and b = 1, 3).

So we can summarize by giving the following equation a+ b = a ? b ? (2ab).

Now, for all e ∈ Z4 we will have (a+ b) · e = (a? b ? (2ab)) · e = [(a? b) · e]? [2abe].

Hence, the vectors v in kernel of C∗ are such that (v + c) · x = 0 ∈ Z4, for all

c ∈ C∗ and x in the Z4 dual of C∗. But (v ? c) · x = 0, so the vectors v in kernel of

C∗ are the vectors in C∗ such that 2 · v · c · x = 0 .

It is straightforward to check the inverse part.

Let u ∈ C∗ be the all 1s quaternary vector with associated permutation σ.

Lemma 3.9 Let C∗⊥ be the Z4 dual of C∗. For δ ≥ 3 and any pair of different

vectors v, w ∈ C∗⊥ which are not of order two and different from u, we have that

the componentwise product 2 · v · w 6∈ C∗⊥.
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Proof: For δ ≥ 3 take two vectors, v, w ∈ C∗⊥ such that v 6= u, w 6= u and its

order is not 2. The quarter of the coordinates in v and w are, respectively, 0s, 1s,

2s and 3s and the Hamming distance of the binary representation is d(v, w) = 2t−1.

Compare the coordinates in v and w and note that there λ times the two pairs

11, 33 (which give us the componentwise product 1), λ times the two pairs 13, 31

(which give us the componentwise product 3), λ times the four pairs 12, 21, 32, 23

(which give us the componentwise product 2) and λ times the eight pairs 01, 02, . . .,

22 (which give us the componentwise product 0). The binary length of the code is

n+ 1 = 2t and λ = 2t−1/42.

Now compute 2 · v · w and note that we obtain a vector with all the coordinate

zeroes except for λ times four coordinates which are 2s. The Hamming weight of

this vector is 8λ = 2t−2, which is a contradiction because all the vectors in C∗⊥ must

have Hamming weight 2t−1.

Proposition 3.10 K(C∗⊥) ⊂ K(C∗).

Proof: We know C∗⊥ ⊂ C∗ (see lemma 3.7). Now the result is straightforward

from lemma 3.8.

Proposition 3.11 ([3]) The dimension of the kernel of C∗⊥ is dimK(C∗⊥) = γ +

δ + 1 for δ ≥ 3. Otherwise C∗⊥ is linear and dimK(C∗⊥) = γ + 2δ.

Proof: It is easy to compute the dimension of C∗⊥ which is γ + 2δ = t+ 1.

For the kernel, from lemma 3.8 it is easy to see that all the vectors in C∗⊥ of

order two are in it and the vector u too. This means that in the kernel there are at

least γ + δ+ 1 independent binary vectors. But for δ ≥ 3 there are no more vectors

in the kernel since lemma 3.8 and 3.9.

When δ = 1 we have dim(K(C∗⊥)) = γ+δ+1 = γ+2δ and when δ = 2 we know

γ+δ+2 independent vectors in the kernel, but it is not possible to have a kernel with

index 2, so when δ = 2 the code must be linear and dim(K(C∗⊥) = γ+δ+2 = γ+2δ.

Lemma 3.12 Let C∗ be an extended 1-perfect Z4-linear code, then Aσ 6= ∅ and

Aσ ⊂ K(C∗). Also AId ⊂ K(C∗).
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Proof: From Lemma 3.8 and Proposition 3.10, we know that the all ones quaternary

vector u ∈ K(C∗⊥) ⊂ K(C∗) and u ∈ Aσ.

The vectors from AId are vectors of order two, so in quaternary notation they

have coordinates only 0s and 2s. Hence from lemma 3.8 it is direct to see that

AId ⊂ K(C∗).

Lemma 3.13 Aπ is a coset Aπ = AId ? x = AId + x, where πx = π.

Theorem 3.14 Let C∗ be an extended 1-perfect Z4-linear code of binary length

n+ 1 = 2t and t+ 1 = γ + 2δ. The dimension of AId is 2t−1 − 2δ−1.

Proof: As we have previously seen we can think of the parity check matrix H of C∗

as consisting of all column vectors of the form Zγ
2 × Zδ−1

4 × {1 ∈ Z4}. Equivalently,

the columns of H consist of cosets of the subgroup H2 = Zγ
2 × {0, 2}δ−1. The

codewords c ∈ AId of weight 4 correspond to Z4-codewords having exactly two

nonzero coordinates with 2’s. Equivalently, there must be two column vectors x, y

of H such that,

2x+ 2y ≡ 0 (mod 4) or x+ y ≡ 0 (mod 2)

This occurs if and only if x, y are in the same coset of H2. There are 2δ−1 such cosets

each corresponding to a sub-code of dimension 2γ+δ−1 − 1.

It is not hard to see that AId does not contain any words of weight 6 and thus is

generated by codewords of weight 4. Hence the dimension of AId is (2γ+δ−1−1)2δ−1 =

2t−1 − 2δ−1.

The following lemma is easy to prove:

Lemma 3.15 For any π ∈ Aut(C), C a 1-perfect binary code of length 2t − 1, the

number of fixed points, i.e., the number of coordinates fixed by π, is 2s− 1 for some

0 ≤ s ≤ t.

Of course for extended 1-perfect codes the number of fixed points in any auto-

morphism is just 2s.

Proposition 3.16 Let C∗ be an extended 1-perfect Z4-linear code. For δ ≥ 3 we

have K(C∗) = AId ∪ Aσ. For δ = 2 we have K(C∗) = AId ∪ Aσ ∪ Aπω ∪ Aσ◦πω for

some w ∈ C∗⊥ with πw 6= σ and πw 6= Id.
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Proof:

We know AId ∪ Aσ ⊂ K(C∗) (see lemma 3.12).

So assume we have a vector v in Ker(C∗) such that v is not of order two and

also πv 6= σ.

Let w be a vector in C∗⊥, such that w is not of order 2 and also πw 6= σ. This

vector w exists when δ ≥ 2 and for δ ≥ 3 we can take w not in Ker(C∗⊥). Then

πv ∈ Aut(C∗) and πv consists of a subset of involutions making up σ. By lemma

3.15, πv moves at most half of binary coordinates in w, so dH(w, πv(w)) < 2t−2 which

is impossible unless πv = πw. But in this case w ∈ Ker(C∗) and, from lemma 3.8,

w ∈ Ker(C∗⊥) and this contradicts our assumption when δ ≥ 3.

For δ = 2, all the vectors w ∈ Ker(C∗⊥) we can take so that πω 6= Id and πω 6= σ

have the same associated permutation, either πω or πω ◦ σ, so by using the same

argumentation we reach the conclusion that either v ∈ AId + w or v ∈ AId + w′,

where ω′ = u ? ω (u is the all ones vector). Hence K(C∗) = AId ∪Aσ ∪Aπω ∪Aσ◦πω .

Corollary 3.17 Let C∗ be an extended 1-perfect Z4-linear code of binary length

n+ 1 = 2t.

For δ = 1 and t > 4 the dimension of the kernel is dimK(C∗) = 2t−1 + t− 1.

For δ = 2, the dimension of the kernel is dimK(C∗) = 2t−1 − 2δ−1 + 2 = 2t−1.

For δ ≥ 3 the dimension of the kernel is dimK(C∗) = 2t−1 − 2δ−1 + 1.

Proof: For δ ≥ 2 it is straightforward from the previous proposition.

For δ = 1 and t = 4 we know code C∗ is linear (see Theorem 3.5) so K(C∗) = C∗.

For δ = 1 and t > 4 take a vector v in Ker(C∗) such that v is not of order two

and also πv 6= σ. We note that since πv and σ ◦ πv are automorphisms assumed to

be different from the identity, both have to have exactly 2t−1 fixed points. We can

take as a representative of this vector v a vector with half coordinates zeroes and

the other half ones (if we need it we can operate this vector by vectors in AId).

For each one of these vectors like v, the vector 2 ·v is in C∗⊥ so there are at most

t − 1 of them which be independent. We have seen that the parity check matrix

of C∗ consists of all column vectors of the form Zγ
2 × {1 ∈ Z4}, where γ = t − 1.

The vectors 2 · v are the rows of this parity check. For x ∈ C∗⊥ we have 2 · v · x is

12



the zero vector or 2 · v · x = 2 · v. In any case, for all c ∈ C∗ the addition of the

componentwise product 2 · v · x · c = 0 and since Lemma 3.8 v ∈ Ker(C∗).

As a summary we give the following tables for the case of length n+ 1 = 16 (so

t = 4), for the case n+ 1 = 32 (so t = 5) and for the general case.

Capitals K and R means, respectively, the rank and the dimension of the kernel.

R K R K R K

t = 4
Additive

non Z4-linear

11 11 12 9 13 8

Additive

Z4-linear

* * 11 11 13 8

γ 4 3 1

δ 0 1 2

R K R K R K R K

t = 5
Additive

non Z4-linear

26 26 27 20 28 17 * *

Additive

Z4-linear

* * 27 20 28 16 29 13

γ 6 4 2 0

δ 0 1 2 3

R K R K R K R K

t
Additive

non Z4-linear

2t−t−1 2t−t−1 2t − t 2t−2 +

2t−1 −
t + 1

· · · · · · 2t−t−1+

δ

2t−δ−1 +

2t−1−t+

δ

Additive

Z4-linear

* * 2t − t 2t−1 +t−
1

· · · · · · 2t−t−1+

δ

2t−1 −
2δ−1 + 1

γ t+ 1 t− 1 · · · γ

δ 0 1 · · · δ

13
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