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Translation-Invariant Propelinear Codes
Josep Rif̀a, Member, IEEE, and Jaume Pujol

Abstract—A class of binary group codes is investigated. These
codes are the propelinear codes, defined over the Hamming
metric spaceFFFn, FFF = f0; 1g, with a group structure. Generally,
they are neither Abelian nor translation-invariant codes but they
have good algebraic and combinatorial properties. Linear codes
and Z4-linear codes can be seen as a subclass of propelinear
codes. It is shown here that the subclass of translation-invariant
propelinear codes is of typeZk
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where Q8 is the

non-Abelian quaternion group of eight elements. Exactly, every
translation-invariant propelinear code of length n can be seen as
a subgroup of Zk
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with k1 + 2k2 + 4k3 = n. For

k2 = k3 = 0 we obtain linear binary codes and fork1 = k3 = 0

we obtain Z4-linear codes. The class of additive propelinear
codes—the Abelian subclass of the translation-invariant prope-
linear codes—is studied and a family of nonlinear binary perfect
codes with a very simply construction and a very simply decoding
algorithm is presented.

Index Terms—Propelinear codes, translation-invariant prope-
linear codes, additive codes, perfect codes,Z4-linear codes,Q8-
codes.

I. INTRODUCTION

USUALLY, we define codes over a metric space
as a subset of . Moreover, if has a group

structure then we will require that be a subgroup of . The
combinatorial properties of depend on the metric structure
of and the algebraic properties of depend on the group
structure of .

If we consider the direct product group then we can
consider codes over with the Hamming distance ,
between and , defined as the number of positions in which

and disagree. This class of codes has been studied in [1]
and [2]. If is an Abelian group then the Hamming distance
is a translation-invariant distance, i.e.,
for all where is the group operation over .
The case when is the finite field GF has usually been
used in the algebraic coding theory (see [3]–[5]).

In a general way (see [6], [7]) we can study codes over
when has an Abelian group structure and there is a metric
defined over such that it is translation-invariant. These
codes are the group codes by Delsarte [6], called additive
codes by Brouwer [7].

Recently (see [8]), for , an additive group structure
over has been defined such that the Hamming metric is a
translation-invariant metric. The subgroups of this structure are

-linear codes. We present this construction in a more general
way: Let be a group and an injective map from to .
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is a code in and it can be fitted with the group
structure of . Generally, we do not know when there exists a
group such that and, with this group structure,
the Hamming metric is a translation-invariant metric. When

is an Abelian group and the Hamming metric is
a translation-invariant metric, then we obtain additive codes.

This point of view is too general because could not
be equal to and the Hamming metric could not be a
translation-invariant metric. We need to assume some restric-
tions over the code .

On the other hand, from distance regular graph theory,
Rifà (see [9]) introduced the class ofpropelinear codeswhich
have important algebraic properties. Generally, these codes
are neither Abelian nor translation-invariant but they include
linear and -linear codes.

The goal of Section IV consists of the characterization of
conditions for the class of propelinear codes to be translation-
invariant and also the characterization to be additive, i.e.,
they have an Abelian group structure for which the Ham-
ming distance leads to a translation-invariant code. The main
theorem of this section states that every translation-invariant
propelinear code is of type .

In Section V we further investigate the additive propelinear
codes. These codes are codes of type . For this class
of codes we can define, as in the linear case, the concept of
duality and we can use the McWilliams Identity. Finally, we
construct a family of perfect additive propelinear codes with
the same properties as those of the Hamming codes but which
are not linear. Moreover, we give a simply decoding algorithm
for this kind of nonlinear codes.

II. PRELIMINARIES

Let be a vector space of dimension over GF .
We denote by the additive group of . A subset of

is a binary code of length . The Hamming distance
between vectors , denoted , is the number
of coordinates in which and differ. The Hamming weight
of is given by , where denotes the
all-zero vector. We shall assume, unless stated otherwise, that

, where is a binary code.
If and we will say

that is a code of parameters , i.e., length , cardinal
, and minimum distance. We will say that is -error

correcting where . Let
be the minimum weight of . If is a vector subspace of

of dimension then we will say that is a linear code
of parameters .

Let be the vectors of of weight .
Thus for every with . Let be
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the set , we define, .
Then

We will say that is a translation association scheme
([7], [6]) if is an association scheme where the
underlying set has the structure of an Abelian group and,
for all classes

An additive codein a translation association scheme
is a subgroup of . with the metric defined by Hamming
distance, is a translation association scheme and linear codes
are additive codes if you see as a translation association
scheme.

We are interested in additive codes where the metric defined
in is the Hamming metric but the additive group of
is not .

A code is said to bedistance-invariant[3] if the
Hamming weight distribution of its translates are the
same for all . In a distance-invariant code the minimum
distance coincides with the minimum weight. Clearly, every
linear code is distance-invariant.

The weight enumeratorpolynomial associated to a binary
code is

For additive codes it is defined the dual code (see [7]) and,
for a linear code , its dual is the linear code

where is the usual inner product
on . The weight enumerator polynomials of and are
related by theMcWilliams Identity

We say that two codes areequivalentif there
exists a Hamming isometry in such that .

Let be a group (not necessarily Abelian). Letbe an
injective map from to such that where
is the identity of . Then, we will say that is a
code in and that is the group associated with. Every
subgroup gives a subcode . We can define a
group structure in by

In this way, there is a one-to-one correspondence between
subgroups of and subcodes of . If is a subcode
of we will say that is a codeof type .

If and we fix the basis in then
defines codes of type which coincides with linear
codes. If then the Gray map (see [8])
where defines -linear codes of type .

Let be a group that acts on , that is, we have a map
from into such that for ,

and for all . An orbit of is a set
; clearly, the orbits partition . We

write for the stabilizer in of , that is, the subgroup
. If for all then

and .

III. PROPELINEAR CODES

Let be the permutation group over the set
.

Definition 1: Let be a subset of that contains the
zero element of , that is, . We will say that
is a propelinear codeif there exists a permutation subset

such that

1) For every if and only if .
2) For every , , where

.

In [9] it is shown that has a group structure, not
necessarily Abelian. The operation onis defined by

for all .
The following proposition explains some algebraic proper-

ties of propelinear codes:
Propsition 2: Let be a binary propelinear code of

length :

1) is a subgroup of the isometric group of and is
linear if and only if is a subgroup of .

2) acts over , that is, for every and

For every is an orbit from the action of over
. The set of orbits partitions in cosetsof C.

Proof: Straightforward.
Definition 3: Let be a propelinear code. We will say that
is atranslation-invariant propelinear codeif for all

and

that is, the action of over preserves Hamming distance.
The next proposition explains some combinatorial properties

of propelinear codes.
Proposition 4: Let be a propelinear code of length

.

1) If is an -error correcting code then all the
vectors of weight at most are in different cosets.

2) is a distance-invariant code but, not necessarily, a
translation-invariant code.

3) and ,

Proof: The proof can be seen in [9] and [10].
Since a propelinear code has a group structure we

will denote by the group associated to where
is a group automorphism from to the group structure

of .
Generally, a propelinear code is not a translation-invariant

code. From Proposition 4 we obtain
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Lemma 5: Let be a propelinear code, is a
translation-invariant code if and only if

and
Proof: If is a translation-invariant code then

Conversely, for and by Proposition 4

For every , we can apply the hypothesis

And if we apply again Proposition 4

Corollary 6: If is a translation-invariant propelinear
code, then .

Proof: For , if then
from the previous lemma. Hence, the stabilizer

and divides , so .
Example 1: Let be a binary linear code. Then is

a propelinear code with . All linear codes
are codes of type . The orbits are the additive cosets

for every . Clearly, is a translation-invariant
code.

Example 2: The -linear codes (see [8]) are linear codes
over the ring (the integers ). In the set

we can define a propelinear structure in the
following way:

where , , and
represents the coordinate transposition of indicesand . With
this structure is a cyclic group of order . That is, is
isomorphic to by where
and is isomorphic to . Thus every -linear code can
be seen as a propelinear code in with the propelinear
structure defined in . They are codes of type and
it is straightforward to show that every -linear code is a
translation-invariant code.

Example 3: Define

where and .

The propelinear code generated byand will be called
a quaternion propelinear code, . This code is
the smallest propelinear code that containsand and,
therefore, it contains where

. It is easy to show that the only vectors
with are and .

The code contains eight elements

and fulfills the following relations:

Notice that is isomorphic to the quaternion group ; that
is, is of type where is the isomorphism from

to . We also remark that is isomorphic to .
It is not difficult to show that the propelinear codes of type

are translation-invariant propelinear codes. In fact, it
suffices to see that codeis a translation-invariant propelinear
code and this is so because for every and

(see Lemma 5)

The verification is left to the reader.
is an example of a propelinear, non-Abelian, but

translation-invariant code.
Example 4: Define

where and .
The propelinear code , generated by and is

an Abelian propelinear code of eight elements but it is not
translation-invariant. In fact

but

in contradiction to Lemma 5. This code is defined by the
relations , , and . It is of
type where and and

where and .
Notice that is not of type , where

is the map defined in Exemple 2.
Example 5: The standard Preparata code , the ex-

tended Preparata code , and related codes are other
examples of propelinear codes. Following [11], letbe the
field GF where . Let be an automorphism
of . We require that both and are
one-to-one mappings.

For the admissible values of we shall define a code of
length . The codewords will be described by
pairs , where , . We interpret the pair



RIFÀ AND PUJOL: TRANSLATION-INVARIANT PROPELINEAR CODES 593

as the corresponding pair of characteristic functions,
i.e., as a -vector of length .

Theextended Preparata code of length consists
of the codewords described by pairs satisfying

1) is even, is even,

2) ,

3) .

The code is obtained by deleting the coordinate that
corresponds to the zero-element ofin the -part.

Symmetric difference of two sets is denoted by
and it corresponds to addition of codewords.

Given we define

and by . Thus given

where .
With this operation is a propelinear code. Related

codes, , Goethals, and Delsarte–Goethals codes, have a
propelinear structure too. However, these propelinear struc-
tures are neither Abelian nor translation-invariant as the reader
can see in the following counter-example:

Let be a primitive element of GF . For
we take defined by and

. Then too (see [11]), and

so . That is, the propelinear
structure of is not Abelian.

Moreover, given defined by
and , we obtain

Now we compute and
which contradicts Lemma 5, so the translation-

invariant condition is not satisfied.
Notice that Kerdock and Preparata-like codes (as they were

defined in [8]) are translation-invariant propelinear codes.

Remark 1: These examples show that a subsetof
can have more than one propelinear structure. For instance,
the subset

has the following propelinear structures: The linear structure
(see Example 1), the -linear structure (see Example 2), the

-structure (see Example 3), and the structure
(see Example 4).

IV. TRANSLATION-INVARIANT PROPELINEAR CODES

We know some important examples of translation-invariant
propelinear codes: linear codes are of this type. Kerdock,
Preparata-like, and related codes (see [8]) are other examples
of translation-invariant propelinear codes. In Section V we
will see a construction of perfect codes which are translation-
invariant propelinear codes but not linear.

Definition 7: Let be a binary code of length.
We will say that is a codeof type if is a
translation-invariant propelinear code of type

where , , and are the maps defined in Examples 1, 2,
and 3, respectively.

In this section we will show that every translation-invariant
propelinear code of length is of type

Notice that if we obtain linear codes and
if we obtain -linear codes (see [8]). The
perfect code family of Section V is of type , for

.
We remark that a code of type is not necessarily

a direct sum of linear codes, -linear codes, and -type
propelinear codes. A code of type is a subgroup
of the group

as we state in the preliminary definitions on Section I.
In the next example we construct the linear Hamming code

of length as a translation-invariant propelinear code of type
.

Example 6: Let , , and be three binary codewords of
length defined by

where

and

Then, the propelinear code generated by, , and is a
perfect translation-invariant propelinear code of length.
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This code contains the following codewords:

where

Note that it is a translation-invariant propelinear code of
type , that is, a subgroup of where

is the isomorphism defined in Example 3.
All the lemmas we need to prove the following theorem

have been placed in the Appendix at the end of the paper.
Theorem 8: Let be a translation-invariant propelinear

code of length , then is of type .
Proof: We want to prove that is a subgroup of

. To do this we will construct a partition of the
index set where ,

, , and and
we will define a translation-invariant propelinear structure on

of which be a subgroup.
Let be the subset of which contains all the indices

such that for all .
Let be two indices not belonging to such

that for all , either or and
. If then, from Proposition 15,
and from Lemma 14, either and

or and . Thus the restriction
of to the set of indices is a -linear code, that is, a
code of type as we have seen in Example 2.

Now, suppose for which and
, then we assert that or because

if it were not true we can deduce or
and, from Lemma 5

Hence, or and the restriction of to
the set of indices is the same -linear code previously
defined.

Let be the subset of which contains all the pairs
of indices , such that for all , either

or and .
Let and suppose . Then, there exists

and two codewords such that and
with and .

Now, from Proposition 17 in the Appendix, if we restrict
the action of to the set of coordinates then

, , and .
We have four possibilities for the coordinate:

1) and .
In this case and .

2) and .
In this case and .

3) and .
In this case and .

4) and .
In this case and .

From

we derive, respectively, two possibilities for each of the pre-
vious cases.

1) and
or and .

2) and
or and .

3) and
or and .

4) and
or and .

So, we have eight possibilities, and the restrictions of
vectors and to the coordinates are

1) .
2) .
3) .
4) .
5) .
6) .
7) .
8) .

where and .
In each case it is straightforward to see that the code

generated by the coordinates of and is a
translation-invariant propelinear code isomorphic to (see
Example 3).

Note that in the previous list there are two nonisomorphic
-codes: 1), 3), 6), and 8) are the same code, and 2), 4), 5),

and 7) are the same code, too. But, both codes cannot coincide
in the same four coordinates. In fact, let be the -code
1), 3), 6), or 8). It can be defined by

(1)

where and .
Let be the -code 2), 4), 5), or 7) defined by

(2)

where and
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Then there exist such that
such that and the codeword is different
from and different from over the set
but , and this contradicts the construction of
(see Example 4).

Now, we must show that if and
then, either and belong to

the -code generated by or and cannot be in
a translation-invariant propelinear code.

If then, from Proposition 17, and
the previous construction ensure that or .

If then we can construct the -codes , ,
and . But this contradicts to Lemma 18.

Finally, for every we define an
isometry in the following way:

1) For all .
2) For all we define,

a) if and
or and .

b) and if and

or and .

3) For all we can define from (1)
or (2) depending on the -code defined in the four
coordinates .

Hence, has one translation-invariant prope-
linear structure such that is a subgroup of .
That is, is of type with .

If then we obtain additive codes, that is
Corollary 9: Every additive propelinear code in is of

type .

V. PROPELINEAR ADDITIVE CODES

From Corollary 9 we can state that every additive prope-
linear code is of type . In this way, if we fix the
basis there is a one-to-one correspondence
between subgroups of and additive propelinear
codes in where .

In this section we will use the -module structure of
, denoted by . We define the map

by where is the map defined in the
Example 2. is a bijection from to . If is
an additive subgroup then is a binary additive
propelinear code of length. We will call anadditive codein

, thus additive codes in correspond to additive propelinear
codes in .

We denote the addition in by . Let be two
vectors, then

where

denotes the binary addition in , and the quaternary
addition in . Also, gives a one-to-one correspondence
between cosets of and cosets of , that is,

where .
Let be an additive code in . Althought need not have

a basis, we can consider a generator matrix for, that is,

where is an -matrix and is an -
matrix, being the number of rows of . Thus every

can be expressed as

where and is a row of .

A. Duality of Additive Propelinear Codes

From Delsarte [6] every additive code has associated a dual
code such that the weigth enumerator polynomials are related
by the McWilliams Identity.

Hence, the additive propelinear codes have associated a dual
code. In this section we will define the dual code and we will
discuss the weight properties of a code and its dual.

In we define an inner product in the standard way: given
vectors in

It is not difficult to show that is an inner product on . If
is a code in then we define thedual codein the standard way

and we define . If , we define the
and the weight enumerator polynomial ofas that

of , that is, .
It is easy to show that if is an additive code in then

is an additive code in and .
The McWilliams Identity (see [6]) related to additive codes

is well known. We can see in [3] or [4] a proof for linear codes
over and in [8] for -linear codes. In [12] we can see a
proof for linear codes over the ring (the integers ).

Theorem 10 (McWilliams Identity):Let be an additive
code in and its dual. If is the weight
enumerator polynomial of and if is the weight
enumerator polynomial of then
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Example 7: The linear Hamming code, can be seen
as a code in . The Hamming code is generated
by , , and .
Its weight enumerator polynomial is

Its dual code is which consists of the following vectors:

and its weight enumerator polynomial is

We remark that the dual code is generated by

B. Decoding Additive Propelinear Codes

Let be an -error correcting additive propelinear code.
Assume that a codeword is transmitted through a
binary-symmetric channel and a vector is received
at the channel output. We wish to decode, that is, find the
unique codeword of at distance at most from . Such a
codeword exists and is equal to, provided , where
the weight of the error vector is at most .

Let be the additive code in such that . Let
the dual code of and let be a generator matrix for

. Thus is a parity check matrix for the code, that is,
, if and only if .

Let be the codeword . We will see that
if is the unique codeword of at distance at most from
then is the unique codeword of at distance
at most from .

For additive codes in there exists an easy way to find the
coset where is. For all we define thesyndromemap

by where is the number of rows in .
As in the linear case there exists a one-to-one correspon-

dence between syndromes and cosets, that is, for all
if and only if .

If where has minimum weight then
and, from Proposition 4, and
is the unique codeword of at distance at mostfrom . Since

where and we have that
is the unique codeword in at distance at most from .

C. Perfect Additive Propelinear Codes

A binary code of length is a -perfect code if there
exists an integer such that every is within
distance from exactly one codeword of . The parameters
of perfect codes are well known. It is shown in [13]–[15] that
such codes exist only for , , with

odd, with and with .
The first three cases are trivial codes. The last code is the

Golay code and we know that it is linear and unique with its
parameters. It is shown that the Golay code is not-linear
(see [8]) and that the only propelinear structure is the linear
one (see [9]).

The perfect linear 1-error correcting codes, namely Ham-
ming codes, are unique but the full classification of nonlinear
perfect 1-correcting codes is not known. For a good overview
of this topic the reader can see the paper of Etzion and Vardy
[16].

In this section we shall construct a family of perfect additive
codes. They are not linear codes but of type where

and . Moreover, they have
a very simply decoding algorithm.

Let and be two matrices constructed in the following
way: is the parity-check matrix of the Hamming code
of length , . is the matrix obtained
from by adding an all-zero first column. We define

where and
.

For example, for

Theorem 11:Let be the additive code in generated by
. Then is an additive propelinear code of length

. Its weight enumerator polynomial is

Proof: First, we compute . is a generator matrix
for . The first rows of have order two and the last
row has order four. Thus the additive code generated by
has order .

Next we compute its weight enumerator polynomial. The
code generated by is equivalent to first-order Reed–Muller
code (see [8, Theorem 7] and [3, ch. 15]). It has
codewords of weight , one codeword of weight zero
(the all-zero codeword), and one codeword of weight(the
all-two codeword: ).

Moreover, the linear code generated by is the simplex
code and has codewords of weight and one
codeword of weight (the all-zero codeword). This linear
code belongs twice in and its all-zero codeword forms the
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codeword and the codeword
. Thus in there exists one vector of weight zero,

codewords of weight , and one
codeword of weight , that is,
codewords of weight .

Thereby, the code has the following weight enumerator
polynomial:

The theorem follows from the equality
.

Corollary 12: For , is a perfect 1-error
correcting nonlinear code of length .

Proof: From the McWilliams Identity (Theorem 10) and
from the previous theorem

that is, the weight enumerator polynomial of coincides
with the weight enumerator polynomial of a perfect 1-error
correcting code (see [3, ch. 5]). Since is a propelinear
code then it is distance invariant (see Proposition 4) and the
minimum distance of is equal to the minimum weight.
Hence, the code is perfect (see [16]).

Next we show that is a nonlinear binary code.
For instance, if we take and

, then . Thus

and

but

Remark 2: The previous theorem constructs nonlinear per-
fect codes of length , , , . For there is only
one perfect code, the Hamming code. Our construction can be
applied here from

and we obtain the description of Hamming code as the
propelinear code seen in Example 7.

The Hamming codes have a very simply decoding algorithm
(see [3], [4]). We will see that our family of additive perfect
codes has a decoding algorithm which is comparable in
complexity to the decoding algorithm for perfect 1-error
correcting linear codes.

Let be the transmitted codeword and let
be the received vector where . We denote

by and by . If then there exists
with such that and or .

Theorem 13 (Decoding Algorithm):Let be the
syndrome of the received vector. Thenis a vector of
coordinates in . If we define the
number

1) If then is the transmitted codeword.
2) If then there is a single error in the

coordinate of .
3) If then there is a single error of weight

in the coordinate of .

Proof: Let

be the columns of . If the error is in position , with
then and

If the binary error is in position, with
then and or . Hence,

and . Let be
a matrix whose columns are the binary representations of
integers . Then, the submatrix of constituted
by the first rows is equal to the matrix . Now, for

and

where

is the decimal representation of the integer . That
is, the error is in the coordinate

VI. CONCLUSION AND FURTHER RESEARCH

In this paper we have shown that propelinear binary codes
are a good way to handle nonlinear binary codes. More-
over, when we consider translation-invariant propelinear codes
then we obtain a classification theorem. This classification
includes additive propelinear codes and some nonadditive
but translation-invariant codes, the -codes. We think that

-codes are not as good as additive propelinear codes but
they have good algebraic and combinatorial properties. For
instance, the Hamming code, , has a -structure,
exactly it is of type (see Example 6). Further results
on this topic would be interesting to investigate.
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Moreover, we have constructed a family of nonlinear 1-
error correcting codes and the decoding algorithm to correct
the error. This kind of constructed codes is additive and further
research on this topic can include new families of nonadditive
1-error correcting codes.

APPENDIX

We assume that is a translation-invariant propelinear
code.

Lemma 14: If then either or .
In the last case, for every such that
we have, if then and if
then .

Proof: Since is a translation-invariant code, if
, then there exist two coordinate vectors such that

according to Lemma 5. Hence, if and only if
.

Proposition 15: , , and has an Abelian
group structure.

Proof: Since is a translation-invariant code, from
Lemma 5, and

This equality is true if or, otherwise, there
exists such that and, therefore, there exists
a vector of weight , , such that .

In this case, let and suppose .
Obviously, and, from Lemma 14, and

or and .
Suppose . Then

which contradicts to Lemma 5. So, and . All
the elements in are idempotents, so has an Abelian group
structure.

From this proposition we can assert that for every ,
or is a product of coordinate transpositions.

The next corollary is straightforward from the previous
proposition.

Corollary 16: .
Proposition 17: If and

with and then

1) with and .
2) Let be the restriction of over the set of coordinates

. Then , , and
.

Proof: The first assertion is clear becauseis Abelian.
For the second assertion we have

Lemma 18: Let be three codewords such that the
subcodes and are different -codes (see Example
3). Then the subcode cannot be a -code.

Proof: The code and the code fulfil the
conditions

and, from this, .
Now, if were a -code then

but

So, the lemma is proved.
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