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Translation-Invariant Propelinear Codes

Josep Rik, Member, IEEE and Jaume Pujol

Abstract—A class of binary group codes is investigated. These ¢(G) = C'is a code inF™ and it can be fitted with the group
codes are the propelinear codes, defined over the Hamming structure ofG. Generally, we do not know when there exists a

metric spaceF™, F = {0, 1}, with a group structure. Generally,
they are neither Abelian nor translation-invariant codes but they

have good algebraic and combinatorial properties. Linear codes

group G such thatp(G) = F™ and, with this group structure,
the Hamming metric is a translation-invariant metric. When

and Zs-linear codes can be seen as a subclass of propelinearp(G) = F™ is an Abelian group and the Hamming metric is

codes. It is shown here that the subclass of translation-invariant
propelinear codes is of typeZi' @ Z§? @ Qf* where Qs is the
non-Abelian quaternion group of eight elements. Exactly, every
translation-invariant propelinear code of length n» can be seen as
a subgroup of Z5* & Z§? & Q&* with ki + 2ks + 4ks = n. For
ko = k3 = 0 we obtain linear binary codes and fork, = k3 =0
we obtain Z,-linear codes. The class of additive propelinear
codes—the Abelian subclass of the translation-invariant prope-
linear codes—is studied and a family of nonlinear binary perfect
codes with a very simply construction and a very simply decoding
algorithm is presented.

Index Terms—Propelinear codes, translation-invariant prope-
linear codes, additive codes, perfect code</,-linear codes,Qs-
codes.

I. INTRODUCTION

SUALLY, we define codes over a metric spaCk, d)
as a subset” of X. Moreover, if X has a group
structure then we will require th&t be a subgroup oX. The

a translation-invariant metric, then we obtain additive codes.

This point of view is too general becauge could not
be equal toF™ and the Hamming metric could not be a
translation-invariant metric. We need to assume some restric-
tions over the code”.

On the other hand, from distance regular graph theory,
Rifa (see [9]) introduced the class fopelinear codesvhich
have important algebraic properties. Generally, these codes
are neither Abelian nor translation-invariant but they include
linear andZ,-linear codes.

The goal of Section IV consists of the characterization of
conditions for the class of propelinear codes to be translation-
invariant and also the characterization to be additive, i.e.,
they have an Abelian group structure for which the Ham-
ming distance leads to a translation-invariant code. The main
theorem of this section states that every translation-invariant
propelinear code is of typg€5* @ zZ¥ @ Qb:.

In Section V we further investigate the additive propelinear

combinatorial properties of’ depend on the metric structurecodes. These codes are codes of tgéeea&ﬁ For this class
of X and the algebraic properties 6f depend on the group of codes we can define, as in the linear case, the concept of

structure of X.
If we consider the direct product grou”™ then we can
consider codes oveK™ with the Hamming distancé(z, ),

duality and we can use the McWilliams Identity. Finally, we
construct a family of perfect additive propelinear codes with
the same properties as those of the Hamming codes but which

between: andy, defined as the number of positions in whictare not linear. Moreover, we give a simply decoding algorithm
= andy disagree. This class of codes has been studied in f€] this kind of nonlinear codes.
and [2]. If X is an Abelian group then the Hamming distance

is a translation-invariant distance, i.6(z, y) = d(z* 2z, y* 2)
for all z,y,z € X™ wherex is the group operation ovek.

The case wherX is the finite field GKg) has usually been

used in the algebraic coding theory (see [3]-[5]).

In a general way (see [6], [7]) we can study codes a¥er
when X has an Abelian group structure and there is a metri
defined overX such that it is translation-invariant. These
codes are the group codes by Delsarte [6], called additi

codes by Brouwer [7].

Recently (see [8]), fon = 2k, an additive group structure
over F"* has been defined such that the Hamming metric i
translation-invariant metric. The subgroups of this structure a
Z4-linear codes. We present this construction in a more general

way: LetG be a group and an injective map fron( to F™".

S, a

Il. PRELIMINARIES

Let F* be a vector space of dimension over GF(2).
We denote byZy the additive group ofF™. A subset of
F™ is a binary code of lengtlm. The Hamming distance
between vectors:,y € F™, denotedd(x,y), is the number
&f coordinates in whicl: andy differ. The Hamming weight
\c/>f x is given by wty(z) = d(z,0), where0 denotes the
¥fi-zero vector. We shall assume, unless stated otherwise, that
0 € C, whereC C F" is a binary code.

If |C| = M andd = min{d(u,v) | v,v € C} we will say
thatC is a code of paramete(s, M, d), i.e., lengthn, cardinal
and minimum distancé. We will say thatC is ec-error
correcting wheree = | 452 |. Let w = min{wty(u) | v € C}
be the minimum weight of”. If C is a vector subspace of
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of parametergn, k, d).
Let £ = {e1,---,e,} be then vectors of F"* of weight 1.
Thus for everyy € F*, v = > A\;e; with A; € {0,1}. Let I be
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the set{1,2,---,n}, we definesup(v) ={i € I | A; =1}, andexr = z for all + € F". An orbit of G is a set
Then Gz = {gz | g € G}; clearly, the orbits partitionF™. We
write GG, for the stabilizerin G of z, that is, the subgroup
whar(v) =) A (g€ G|gr=a)If Go = {e) forall z € F" then

_ — ok
We will say that(X, R) is a translation association schemé™ = |G| and |G| = 2%,

([71, [6]) if (X,R) is an association scheme where the
underlying setX has the structure of an Abelian group and,
for all classesRk € R Let S, be the permutation group over the sét =
{17 Ty 7’L}

Definition 1: Let C be a subset of™ that contains the
An additive codein a translation association scherq®, R) Z€ro element off™, that is,0 € C. We will say thatC
is a subgroup of{. F™* with the metric defined by Hamming IS 2 propelinear codeif there exists a permutation subset
distance, is a translation association scheme and linear colles {7 | v € C} C S, such that
are additive codes if you sel" as a translation association 1) For everyv € C, v+ 7,(s) € C if and only if s € C.

lll. PROPELINEAR CODES

(ry)eR=(r+zy+2)€R

scheme. 2) For everym,,m, € 1, my om, = m, € II, where
We are interested in additive codes where the metric defined w = u + m,(v).

in F" is the Hamming metric but the additive group Bf' In [9] it is shown that(C,1I) has a group structure, not

is not Z%. necessarily Abelian. The operation 6his defined by

A codeC C F" is said to bedistance-invarian{3] if the
Hamming weight distribution of its translat&s + v are the
same for alk: € C. In a distance-invariant code the minimuntor all »,v € C.
distance coincides with the minimum weight. Clearly, every The following proposition explains some algebraic proper-

uxv=u+m,(v) €C

linear code is distance-invariant. ties of propelinear codes:
The weight enumeratopolynomial associated to a binary Propsition 2: Let (C,II) be a binary propelinear code of
code C' is length n:
We(X,Y) = Z xn—wtn(wy wts(u) 1) Il is a subgroup of the isometric group B andC is

linear if and only ifII is a subgroup of\ut (C).

N o ) 2) C acts overF™, that is, for everyy € C andz € F™
For additive codes it is defined the dual code (see [7]) and,

ucC

for a linear codeC, its dual is the linear code vkx =v+my(z) € F.
Ct = {we F" | (w,u) = 0} For everyz € F™, Cxx is an orbit from the action of’ over
F7™. The set of orbits partition#™ in cosetsof C.
where(w, u) = wiug + - - - + wy, is the usual inner product Proof: Straightforward. u
on F". The weight enumerator polynomials 6fand C are Definition 3: Let C be a propelinear code. We will say that
related by theMcWilliams Identity C is atranslation-invariant propelinear codéfor all u,v € C
andz € F"

Wel (X,Y) = ﬁWC(X +Y, X-Y).
We say that two code§’;, C> C F" areequivalentif there that is, the action of®' over F* preserves Hamming distance.
exists a Hamming isometry in F™ such thatr(C;) = Cs. The next proposition explains some combinatorial properties
Let G be a group (not necessarily Abelian). Letbe an of propelinear codes.
injective map fromG to F™ such thatg(e) = 0 wheree Proposition 4: Let (C,II) be a propelinear code of length
is the identity of G. Then, we will say tha(G) = Cis a n.

code inF™ and that is the group associated withi. Every 1) If C is ane-error correcting codé¢c > 1) then all the

d(u,v) = d(u* x,v * z)

subgroupG’ C G gives a subcod€” C C. We can define a vectors of weight at most are in different cosets.
group structure inC' by 2) C is a distance-invariant code but, not necessarily, a
wrkv = (¢~ w) L (v)). translation-invariant code.

3) Va,y € F" andYv € C,
In this way, there is a one-to-one correspondence between
subgroups of7 and subcodes of” C C. If C’ is a subcode
of C' we will say thatC’ is a codeof type (G, ¢). Proof: The proof can be seen in [9] and [10]. [

If G = Z% and we fix the basi& in F" thenld : G — F" Since a propelinear codg”, II) has a group structure we
defines codes of typéZy,Id) which coincides with linear will denote by (G(C), ¢¢) the group associated 6 where
codes. IfG = Z} then the Gray map (see [8}): Z} — F™ ¢ is a group automorphism frod#(C') to the group structure
wheren = 2k definesZ,-linear codes of typgZ¥, ¢). of C.

Let G be a group that acts oR™, that is, we have a map Generally, a propelinear code is not a translation-invariant
from G x F™ into F™* such that forg, h € G, g(ha) = (gh)x code. From Proposition 4 we obtain

d(z,y) = d(v*z,v*y).
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Lemma 5:Let (C,II) be a propelinear codeC is a
translation-invariant code if and only if

wtg(v) = d(z,v*x)

Ve €¢ F" andVv € C
Proof: If C is a translation-invariant code then

wtg(v) = d(0,v)

=d(z,vxx) Yz e F".

Conversely, foru,v € C and by Proposition 4
d(u,v) = d(0, 4™t % v).

For everyxz € F™, we can apply the hypothesis

“Livxzx

d(0,u™t %) = wig(u™t % v) = d(z,u ).

And if we apply again Proposition 4

) %)

(z,u™ % (vxz))

1

d(u,v) = d(z, (v *v

=d
=d

(u*z,vx2) ]
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The propelinear code generated &yand b will be called
a quaternion propelinear codeC = {(a,b). This code is
the smallest propelinear code that contamsand b and,
therefore, it containga x b, mexy) = (1100,71100) Where
71100 = (1,4)(2, 3). It is easy to show that the only vectais
with 7, = Id arew = (0000) and v = (1111).

The code contains eight elements

C= {(07 Id)7 (a'7 7r0,)7
a27-[d)7 (a'377r0,)7
b, 7Tb), (a'*bv Wa*b)v

(
(
(@ xb,7p), (a° x b.7g p))

a

and fulfills the following relations:

at=0 a’? =1 axbxa=~0.

Notice thatC is isomorphic to the quaternion groGgx; that
is, C'is of type (Qs, ¢s) Where¢pg is the isomorphism from
Qs to C. We also remark thaltl is isomorphic toZ; ¢ Z.

It is not difficult to show that the propelinear codes of type
(QF, ¢%) are translation-invariant propelinear codes. In fact, it
suffices to see that codeis a translation-invariant propelinear

code and this is so because for everg F* andv € C

wtg(v) =d(xz,v*z) (see Lemma 5)

Corollary 6: If C is a translation-invariant propelinearThe verification is left to the reader.

code, then|C| = 2*.

Proof: Forz € F", if vxz =z then0 = d(vxz,z) =
wt g (v) from the previous lemma. Hence, the stabilizgr=
{0} and|C| divides|F™|, so|C| = 2. ]

Example 1: Let C C F™ be a binary linear code. The¥iis
a propelinear code withl = {Id | Yv € C}. All linear codes
are codes of typé€Z7, Id)
C + x for everyx € F". Clearly, C is a translation-invariant
code.

Example 2: The Z4-linear codes (see [8]) are linear code
over the ring Z, (the integersmod4). In the setF? =

{00,01, 10,11} we can define a propelinear structure in the

following way:

F2 = {(00,7(00)(01,7(01), (11,7(11), (10, 7r10)}

where mgg = w1 = Id, mo1 = 710 = (1,2), and (L,J)

represents the coordinate transposition of indicasd ;. With

this structureF? is a cyclic group of orded. That is, Z, is

isomorphic toF? by ¢4(1) = (01, 7;) wheremo, = (1,2)

and II is isomorphic toZ,. Thus everyZ,-linear code can
be seen as a propelinear codeif” with the propelinear
structure defined i2. They are codes of typeZy, ¢}) and

it is straightforward to show that every,-linear code is a
translation-invariant code.

Example 3: Define

a—= (1010,7?1010) S F*
b= (1001,7(1001) € .F4

Where7r1010 = (1,2)(3,4) and7r1001 = (1,3)(2,4)

C is an example of a propelinear, non-Abelian, but
translation-invariant code.
Example 4: Define

a—= (1010,7(1010) € .F4
b= (1100,7(1100) € .F4

. The orbits are the additive cosets

Where7r1010 = (1,2)(3,4) and7r1100 = (1,3)(2,4)

The propelinear cod€’ = (a,b), generated by: andb is
an Abelian propelinear code of eight elements but it is not
translation-invariant. In fact

wt g (axb) = wtg(0110) = 2
but
d(0100, @ * b * (0100)) = wt(0000) = 0

in contradiction to Lemma 5. This code is defined by the
relationsa* = 0, b*> = a2, anda xb = b« a. It is of
type (Z2 @ Zi, ) where $(0,1) = a and ¢(1,1) = b and
¢(x,y) = a¥~* xb” wherex € Z, andy € Z,.

Notice thatC' is not of type(Zs & Z4, (Id, ¢4)), whereg,
is the map defined in Exemple 2.

Example 5: The standard Preparata co®(c), the ex-
tended Preparata cod®(s), and related codes are other
examples of propelinear codes. Following [11], JEtbe the
field GK2™) wherem > 3. Letz — 2z be an automorphism
of F. We require that bothx — z°*! andxz — z°~! are
one-to-one mappings.

For the admissible values of we shall define a codé of
length 2n + 2 = 2™+ The codewords will be described by
pairs (X,Y), whereX C F,Y C F. We interpret the pair
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(X,Y) as the corresponding pair of characteristic functions, Remark 1: These examples show that a sub&ewf F™
i.e., as a(0,1)-vector of length2m+1, can have more than one propelinear structure. For instance,
The extended Preparata code(c) of length2™+! consists the subset
of the coqewords desF:rlbed by paiX,Y’) satisfying C={ueF* | winw)=0 (mod2)}
1) |X]| is even,|Y] is even,
has the following propelinear structures: The linear structure

2 Sx= Y (see Example 1), th&,-linear structure (see Example 2), the
zeX yeyY " (Js-structure (see Example 3), and thé, ¢ Z4, ¢) structure
3) Y 2t 4 < 5 x) ety (see Example 4).
rzeX rzeX yey

. . . . IV. TRANSLATION-INVARIANT PROPELINEAR CODES
The codeP(o) is obtained by deleting the coordinate that

corresponds to the zero-elementBfin the X-part. We know some important examples of translation-invariant
Symmetric difference of two set&;, X, is denoted by Propelinear codes: linear codes are of this type. Kerdock,
X;AX, and it corresponds to addition of codewords. Preparata-like, and related codes (see [8]) are other examples
Given X c F we define of translation-invariant propelinear codes. In Section V we
will see a construction of perfect codes which are translation-
o= Z rE€F invariant propelinear codes but not linear.
e X Definition 7: Let C C F™ be a binary code of length.
We will say thatC is a codeof type (ki, ks, k3) if Cis a
and rx : F — F by nx(y) = y + a. Thus given translation-invariant propelinear code of type
(X, ), (U, V) € Plo) (Zé“l & 7 @ Ok, (1d, ¢, lgg))(kl + 2%y + 4k = n)
(X, Y) (U, V) = (Xonx (U), YAV) whereld, ¢4, and¢g are the maps defined in Examples 1, 2,
and 3, respectively.
wherenx (U) = U + a. In this section we will show that every translation-invariant

With this operationP(s) is a propelinear code. Relatedpropelinear code of length is of type
codes,P(«), Goethals, and Delsarte—Goethals codes, have a
propelinear structure too. However, these propelinear struc- (k1, ko, k3) (k1 + 2ks + 4k3 = n).
tures are neither Abelian nor translation-invariant as the rea%(gtice that if by = ks
can see in the following counter-example:

Let 5 be a primitive element of GR™). For m = 3
we take (U,V) € P(2) defined byU = {0,8} andV =
{B,3%,8%,3°}. Then(V,U) € P(2) too (see [11]), and

= 0 we obtain linear codes and
if k&1 = k3 = 0 we obtain Z4-linear codes (see [8]). The
perfect code family of Section V is of tyqélg—l, "T“, 0), for
n=2"-1(m >3).

We remark that a code of tyfé , k2, k3) is not necessarily
. ) a direct sum of linear codesj,-linear codes, and}s-type
(UV)* (V,U) = (Ul (V)’4VAGU) propelinear codes. A code of tygé;, k2, k3) is a subgroup

= (UA{0,1, 5%, 8}, VAU) of the group

_ 4 6
={LASLFLVAY) (25 & 28 & Qk, (Id, ¢l 48)).

as we state in the preliminary definitions on Section I.

WV U) = (U, V) = (VAry (U), UAV) In the next example we construct the linear Hamming code
= (VA{0,5},UAV) of length7 as a translation-invariant propelinear code of type
= ({0,8,8, 8}, UAV) (3,0,1).

Example 6: Let a, b, and ¢ be three binary codewords of
S0 (U, V)*(V,U) # (V,U)* (U, V). That is, the propelinear length 7 defined by
strll\J/Icture ofP(o) is )r}o;Abeh?:n.  defined bvx — (4 a = (100 | 1010, 7100[1010)
oreover, given(X,Y) C F x efined byX = {3} b= (010 | 1001, mos0(5001)

andY = (), we obtain
¢= (111 ] 1111, w111 p1111)
(U, V)*(X,Y) = (UAry(X),V)

where
= (UA{0}V)
= ({B}, V). 7100|1010 = Id | (4,5)(6,7)
7010|1001 — Id | (47 6)(57 7)
Now we computewty (U, V) = 6 and d((X,Y),(U,V) » and
(X,Y)) = 5 which contradicts Lemma 5, so the translation- _
111111 = Id | Id.

invariant condition is not satisfied.
Notice that Kerdock and Preparata-like codes (as they wereThen, the propelinear code generateddyy, andc¢ is a
defined in [8]) are translation-invariant propelinear codes. perfect translation-invariant propelinear code of length



594

This code contains the following codewords:

000 | 0000,7r000|0000) (111 | 11171, 7931111
100 | 1010, 7100j1010) (011 | 0101, 70110101
010 | 1001,7r010|1001) (101 | 0110, m101j0110
110 | 110077fno|1100) (001 | 001177T001|0011
000 | 1111,7r000|1111) (111 | 0000, 7111}0000
100 | 0101, 7190j0101) (011 | 1010, To11 1010
010 | 0110,7r010|0110) (101 | 1001, 71011001
110 0011, 7r110j0011) (001 | 1100, 70011100

TN TN N TN N TN N N
o e e e e L e N

where
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Let I, be the subset off which contains all the pairs
of indices {i,7}, ¢ # j, such that for allu € C, either
mu(e:) = e; or my(e;) = ¢; andmy(e;) = ¢;.

Let I3 = I\(I; Ul;) and supposés; # 0. Then, there exists
¢ € Iy and two codewords:, v such thatr,(e;) = ¢; and
mo(e;) = ep With k #£ j, k # ¢ andi # j.

Now, from Proposition 17 in the Appendix, if we restrict
the action ofII to the set of coordinate&{i,j,k,l} then
m, = (LKD), m, = (L,K)G, D), andm,,, = (4,1, k).
We have four possibilities for the coordinate

1) i € sup(u) andi € sup(v).

In this casej ¢ sup(u) andk ¢ sup(v).

2) i ¢ sup(u) andi¢ € sup(v).

T000]0000 — 7111|1111
= 7111|0000
7100|1010 = 7T011|0101
= 7011|1010

7010|1001 — 7101|0110

= Tooo|1111
=1Id|1d

= 7100|0101
=1d|(4,5)(6,7)

= To10[0110

In this casej € sup(u) andk & sup(v).
3) ¢ € sup(u) andi & sup(v).

In this casej ¢ sup(u) andk € sup(v).
4) ¢ ¢ sup(u) andi ¢ sup(v).

In this casej € sup(u) andk € sup(v).
From

=1d| (4,6)(
7110|1100 = 7001|0011 — 77110]0011
= T001|1100 = Id | (4 7)(5 6)-

J— =
= 7101|1001 2, 7)

wtg (utv) = d(u,v) = d(uxe;, vxe;) = wtg(ute;+v+ex)

we derive, respectively, two possibilities for each of the pre-
vious cases.

Note that it is a translation-invariant propelinear code of 1) ; ¢ sup(v) andk € sup(u)

type (3,0, 1), that is, a subgroup diZ3 & Qs, (Id, ¢3)) where
¢s is the isomorphism defined in Example 3.

All the lemmas we need to prove the following theorem
have been placed in the Appendix at the end of the paper.
Theorem 8:Let C be a translation-invariant propelinear

code of lengthn, thenC is of type (k1, ko, k3).

Proof: We want to prove thaf’ is a subgroup oZ"‘1
zh @ Qb
mdex set/ ={1,2,---,n} = I[; Ul, U I3 where|l{| = ki,
|IQ| = 2ko, |Ig| = 4k3, and n ki1 + 2ko + 4ks and

we will define a translation-invariant propelinear structure on

Zh @ 78 @ Qb of which C be a subgroup.

Let I; be the subset af which contains all the indiceise 1
such thatr,(e;) = e; for all v € C.

Let {¢,7}, ¢ # j be two indices not belonging t such
that for all v € C, eitherm,(¢;) = ¢; or my(e;) = e; and
mu(ej) = ej. If m(e;) = e; then, from Proposition 15,
mu(e;) = e; and from Lemma 14, eithei € sup(u) and
J & sup(u) ori ¢ sup(u) andj € sup(u). Thus the restriction
of u to the set of indiceqs,j} is a Zy-linear code, that is, a
code of type(Zs, $4) as we have seen in Example 2.

Now, supposes € C for which 7, (¢;) = ¢; andw,(e;) =
e;, then we assert thdtj € sup(v) or ¢, j ¢ sup(v) because
if it were not true we can deducgj € sup(v *x u) oOr
t,7 & sup(v+u) and, from Lemma 5

win(vxu) = wtg((vxu) *e; + ¢;)
=witg((vxu) +m, omy(e:) + e
=wtg((vxu)+e;+¢)
< whp(v*uw).
Hencey, j € sup(v) ori, j ¢ sup(v) and the restriction of to

the set of indiceqs, j} is the sameZ,-linear code previously
defined.

or j € sup(v) and k & sup(u).
2) j & sup(v) and k & sup(u)

or j € sup(v) andk € sup(u).
3) j & sup(v) and k ¢ sup(u)

or j € sup(v) and k € sup(u).
4) j & sup(v) and k € sup(u)

or j € sup(v) andk ¢ sup(u).

- To do this we will construct a partition Of the so, we have eight possibilities, and the restrictions of

vectorsy andwv to the{L,J, k,l} coordinates are

1) v = (1010,7)), v = (1001,7)).
2) w = (1001,7,), v = (1100,7,).
3) w = (0101,7',), v = (1001,7").
4) w = (0110,7"), v = (1100,7").
5) w = (1001, ~.,), v = (0011,7).
6) » = (1010,#’,), v = (0110,7.)
7) w = (0110,7),), v = (0011,~.)
8) u = (0101,7"), v = (0110, 7).
wherem, = (i,7)(k,1) and?fi- = (4, k)4, D).

In each case it is straightforward to see that the code
generated by the{i, j, k,I} coordinates ofu and v is a
translation-invariant propelinear code isomorphicQg (see
Example 3).

Note that in the previous list there are two nonisomorphic
Qs-codes: 1), 3), 6), and 8) are the same code, and 2), 4), 5),
and 7) are the same code, too. But, both codes cannot coincide
in the same four coordinates. In fact, €t be the(s-code
1), 3), 6), or 8). It can be defined by

(1010, 71010), (1001, 7o) Q)
wherer g g = (¢,7)(k,1) and 7o, = (4, k)(J, ).
Let C” be the(Qg-code 2), 4), 5), or 7) defined by
(1001, 7001), (1100, 100) (2)

whererigy, = (4,5)(k,1) and o0 = (4, k)(4,1)
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Then there exist, € C’ such thatr,, = (¢, 5)(k,1), v € C” & denotes the binary addition if;, and + the quaternary
such thatr, = (i, 7)(k,1) and the codeword * v is different addition in Z;. Also, ¢ gives a one-to-one correspondence
from (0000) and different from(1111) over the sef{¢, j,k,I} between cosets of and cosets ofC = &(C), that is,
but 7., = Id, and this contradicts the construction @k &©(C + &) = C » x wherez = &(%).

(see Example 4). Let C be an additive code i®. AlthoughtC need not have

Now, we must show that itv € C and 7,(e;) = e, a basis, we can consider a generator matrix(fothat is,

m # i, m # j, m # k then, eitherm = [ and w belong to
the Qs-code generated by, v or m # [ andw cannot be in G=(A B)
a translation-invariant propelinear code.

If m = [ then, from Proposition 175/, = (4,1)(j,k) and
the previous construction ensure that= «x v Or w = v * u.

If m # [ then we can construct th@s-codes(u, v}, (v, w},
and (u x v, w). But this contradicts to Lemma 18.

where A is anr X ki Zy-matrix and B is anr x ky Z4-
matrix, r being the number of rows af. Thus everyu € C,
u = (up,uq) Can be expressed as

Finally, for everyv € Z5 @ zZ} @ Q% we define an .
isometryw,, in the following way: up = @()\i mod 2)v}
1) For alli € Iy, my(e;) = e;. i=1
2) For all {i,j} € I, we define, r 4
L . U :Z)\ivz
a) my(e;) = e, if ¢ € sup(v) and j ¢ sup(v) 1 =t

or i & sup(v) andj € sup(v).
b) m.(e;) = ¢ andm,(e;) = ¢; if ¢ € sup(v) and
Jj € sup(v)
or ¢ ¢ sup(v) andj & sup(v).
3) For all {i,j,k,I1} € I we can definer, from (1) A. Duality of Additive Propelinear Codes
or (2) depending on th&)s-code defined in the four From Delsarte [6] every additive code has associated a dual
coordinates{s, j, k,1}. code such that the weigth enumerator polynomials are related
Hence,Z5' & Z¥ @ Q% has one translation-invariant propeby the McWilliams Identity.
linear structure such th4t is a subgroup oZé“1 @foz @Q’gg_ Hence, the additive propelinear codes have associated a dual
That is,C is of type (ki, k2, k3) with k; + 2ko + 4k3 = n.m  code. In this section we will define the dual code and we will
If k3 = 0 then we obtain additive codes, that is discuss the weight properties of a code and its dual.
Corollary 9: Every additive propelinear code if™ is of In R we define an inner product in the standard way: given
type (kq1,k2,0). u,v vectors inR

where); € {0,1,2,3} andv’ = (v}, v}) is a row of G.

V. PROPELINEAR ADDITIVE CODES ki+ko

k1

From Corollary 9 we can state that every additive prope- wev= 2(@ uivi) + _; lujvj € 2
linear code is of typgk;,k2,0). In this way, if we fix the = =t
basist = {ei,---,e,} there is a one-to-one correspondence
between subgroups ¢ ¢ Z¥) and additive propelinear
codes inF" wheren = ki + 2k».

In this section we will use theZ-module structure of
zk @ zM | denoted byR. We define the map

It is not difficult to show thaw is an inner product oR. If C
is a code inR then we define thdual coden the standard way

Ct={ucR|uev=0%eC}

C:R— " n=kit 2k and we defin€+ = &(C1). If v € C, we define thevt g (v) =
by ® = (Id*, %) where ¢4 is the map defined in the wtx(®(v)) and the weight enumerator polynomial®fs that
Example 2.9 is a bijection fromR to F". If ¢ ¢ Ris ©0f €' =®(C), thatis,We(X,Y) = We(c)=c(X,Y).
an additive subgroup the®(C) = C is a binary additive It is easy to show that i€ is an additive code iR then
propelinear code of length. We will call C anadditive coden C* is an additive code iR and (CH)+ = C.
R, thus additive codes iR correspond to additive propelinear The McWilliams Identity (see [6]) related to additive codes

codes inF™. is well known. We can see in [3] or [4] a proof for linear codes
We denote the addition i® by +. Let u,v € R be two overF, and in [8] for Z,-linear codes. In [12] we can see a
vectors, then proof for linear codes over the ring,, (the integersmod m).
Theorem 10 (McWilliams Identity)Let C be an additive
utv = (ur @, U o, code in R and C* its dual. If We(X,Y) is the weight
Uky 41 F Uk 1o Wy ko T+ Vhy ko) enumerator polynomial of and if W1 (X,Y") is the weight

enumerator polynomial oft then
where poly of

U’:(ulv"'vuk7uk+17"'7uk+k) 1
v e Wee(X,Y) = mWC(XJFY,X—Y).

v = (U17'”7vk17vk1+17"'7vk1+k2)
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Example 7: The linear Hamming codé{(7,4) can be seen C. Perfect Additive Propelinear Codes
as a code ik = Z3 & Z3. The Hamming code is generated A pinary codeC of lengthn is a p-perfectcode if there
by a =(1,0,0,3,3), b=(0,1,0,3,1), andc = (1,1,1,2,2).  gayists an integep > 0 such that everyr € F™ is within
Its weight enumerator polynomial is distancep from exactly one codeword af. The parameters
of perfect codes are well known. It is shown in [13]-[15] that
such codes exist only fgs = 0, p = n, p = (n — 1)/2 with
n odd,p = 1 with n = 2™ — 1 andp = 3 with n = 23.
The first three cases are trivial codes. The last code is the
Golay code and we know that it is linear and unique with its

Wr(X,Y)= X" +7X*Y3 4 7X3Yv 4 Y7,

Its dual code isH+ which consists of the following vectors:

(0,0,0,0,0) parameters. It is shown that the Golay code is Agtlinear

(0,0,0,2,2) (see [8]) and that the only propelinear structure is the linear

(0,1,1,1,3) one (see [9]).

(0,1,1,3,1) The perfect linear 1-error correcting codes, namely Ham-
ming codes, are unique but the full classification of nonlinear

(1,0,1,1,1) perfect 1-correcting codes is not known. For a good overview

(1,0,1,3,3) of this topic the reader can see the paper of Etzion and Vardy

(171707072) [16]

(1,1,0,2,0) In this section we shall construct a family of perfect additive

codes. They are not linear codes but of tye, k2, 0) where
k1 +2ky =nandn = 2™ —1, (m > 4). Moreover, they have
a very simply decoding algorithm.
Wiyo(X,Y) = X7+ 7X374, LetllH gndH" be two matrices cgnstructed in the following
way: ‘H is the parity-check matrix of the Hamming code
of length 2™ — 1, (m > 3). H" is the matrix obtained
from 'H by adding an all-zero first column. We defifi¢ =
w=(1,1,0,0,2), v =(0,1,1,1,3) € Z3 & Zj. ¢~'('H | H") where® : R — F" (n = 2"+ — 1) and
R — Zén—l)/? @ Zin-l—l)/ﬁk'
For example, form = 3

and its weight enumerator polynomial is

We remark that the dual code is generated by

B. Decoding Additive Propelinear Codes

Let C be ane-error correcting additive propelinear code. : 00 0 1 1 11
Assume that a codeword € C' is transmitted through a H=10 110 0 11
binary-symmetric channel and a vecterc F™ is received 1010101
at the channel output. We wish to decadethat is, find the 00001111
unique codeword: of C' at distance at most from z. Such a H=]0 0 1 1 0 0 11
codeword exists and is equal tpprovidedx = ¢ & ¢, where 01 010101
the weight of the error vectqr is at moste. X 00011 11] 00 2 2
LLetC be the additive code i such thalC = &~ (C). Let H=[0 11001 1] 020 2
C— the dual code of’ and let H be a generator matrix for 1010101 ] 1111
C+. Thus H is a parity check matrix for the codg, that is,
v € C, if and only if Hvt = 0. Theorem 11:Let C be the additive code iR generated by

Let & € F" be the codeword = ®~1(z). We will see that 7. ThenC = ¢(C) is an additive propelinear code of length
if ¢ is the unique codeword af at distance at most from # 7 = 2™ — 1. Its weight enumerator polynomial is
then ®(¢) = ¢ € C is the unique codeword of at distance We(X,Y) = X" + nX(—1)/2y (n41)/2
at moste from z.

For additive codes iR there exists an easy way to find the  Proof: First, we computdC|. H is a generator matrix
coset wheret is. For allv € R we define thesyndromemap for C. The firstmm — 1 rows of H have order two and the last

row has order four. Thus the additive code generated+by
S:R— Z; has order™~! .4 = 2m+!l — p 4 1.

Next we compute its weight enumerator polynomial. The
by S(v) = Hv' € Z} wherer is the number of rows irH. code generated bi" is equivalent to first-order Reed—Muller
As in the linear case there exists a one-to-one correspaode (see [8, Theorem 7] and [3, ch. 15]). It fatl — 2
dence between syndromes and cosets, that is, far,al B codewords of weigh2~!, one codeword of weight zero

S(u) = S(v) ifand only if C +u = C + v. (the all-zero codeword), and one codeword of weigjht(the

If & € C+ € whereé has minimum weight thes = ¢+ ¢ all-two codeword:222- .- 2).
and, from Proposition 4J(¢, ) = d(¢, ¢+ €) = wty(€) andé Moreover, the linear code generated 4y is the simplex
is the unique codeword df at distance at mostfrom i. Since code and ha®™ — 1 codewords of weigh2™~! and one
d(¢, &) = d(e, z) whereec = ®(¢) andz = ®(Z) we have that codeword of weight0 (the all-zero codeword). This linear
¢ is the unique codeword i at distance at most from z.  code belongs twice i€ and its all-zero codeword forms the
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codeword(00---0 | 00---0) and the codeword00---0 | Theorem 13 (Decoding Algorithm)Let « = Hi' be the
22-.-2). Thus inC there exists one vector of weight zerosyndrome of the received vector. Thenis a vector ofm

2m+1 _ 2 codewords of weighe™~! 4+ 2m~1 = 2™ and one coordinates inZy. If a = (a1,a2,--+,a,,) We define the
codeword of weightd + 2™ = 2™, that is,2™*t! —1 = n  number

codewords of weighg™ = =$.

Thereby, the cod€ has the following weight enumerator p= Zaﬂm_i.
polynomial: i=1
We(X,Y) = X" 4 nX(n0/2y (4072, 1) If p=0thenz = &(z) is the transmitted codeword.
’ 2) If p = 0(mod2) then there is a single error in theg'2
The theorem follows from the equalityVc(X,Y) = coordinate ofz.
We(X,Y). ] 3) If p =1 (mod2) then there is a single error of weight
Corollary 12: For m > 3, ®(Ct) is a perfect 1-error (€ = am) in the coordinates; + 2== + 1 of 7.
correcting nonlinear code of length= 2m+! — 1. Proof: Let
Proof: From the McWilliams Identity (Theorem 10) and Lo A _—
from the previous theorem Y Y Y R
Waesy(X,Y) = Wes (X, Y) be thek; + k2 columns ofH. If the error is in positiory, with

1 j < ki thena = 2h7 and
= o We(X+Y, X -Y)

IC| p=2>_ h2m.
1
= @WC(X +Y, X -Y) If the binary error is in position, with &y +1 < j < ky+ko
then¢ = q,, anda,,, = 1 or a,,, = 3. Hence,
that is, the weight enumerator polynomial®fC~) coincides el
with the weight enumerator polynomial of a perfect 1-error p= Z hi2mt 4 a,,
correcting code (see [3, ch. 5]). SindéC~) is a propelinear im1

code then it is distance invariant (see Proposition 4) and the 0 11 ko1
minimum distance of(C1) is equal to the minimum weight, 3" » = 1 (mod 2). Let D = (d".d",..-,d*™") be
Hence, the code is perfect (see [16]). a matrix whose columns are the blnar_y represen?atlons of

Next we show that®(C1) is a nonlinear binary code. M€9ers), 1,--,ky—1.Then, the submatrix oi" constituted
For instance, if we takei = (0---0010 | 30---001) and by the firstm — 1 rows is equal to the matri2D. Now, for

&= (0---0100 | 10---010), theni, & € CL. Thus 11 S5 Skt ke
m—1 m—1
®() = u = (0---0010 | 1000- - - 000001) € ®(C1) p—am=3 h2mi=%" o) ~(kitL gm—i
and i=1 i=1
®(7) = v = (0---0100 | 0100 --000100) € B(cL) and -
but P—am _ Z gi— Gt gm—i—1
d~Hu@v)=o"0---0110 | 1100 ---000101) 4 i=1
=(0---0110]20---011) ¢ Ct. m  where
m—1
Remark 2: The previous theorem constructs nonlinear per- Z F— it gm—i-1
fect codes of length 5, 31, 63, .... Forn = 7 there is only P '
one perfect code, the Hamming code. Our construction can be ) ) o
applied here from is the decimal representation of the integer (k; 4 1). That
is, the error is in the coordinaty — a,,)/4 + k1 + 1. |
. <0 1 1)
H=
101 VI. CONCLUSION AND FURTHER RESEARCH

and we obtain the description of Hamming code as theln this paper we have shown that propelinear binary codes
propelinear code seen in Example 7. are a good way to handle nonlinear binary codes. More-
The Hamming codes have a very simply decoding algorithaver, when we consider translation-invariant propelinear codes
(see [3], [4]). We will see that our family of additive perfecthen we obtain a classification theorem. This classification
codes has a decoding algorithm which is comparable imcludes additive propelinear codes and some nonadditive
complexity to the decoding algorithm for perfect 1-errobut translation-invariant codes, thigs-codes. We think that
correcting linear codes. Q)s-codes are not as good as additive propelinear codes but
Let ¢ € C be the transmitted codeword and et= ¢ e € they have good algebraic and combinatorial properties. For
F" be the received vector wherety(e) < 1. We denote instance, the Hamming codé{(7,4), has a(Qs-structure,
®~1(c) by ¢and®~1(x) by #. If d(&, &) = 1 then there exists exactly it is of type(3,0,1) (see Example 6). Further results
¢ € Rwith wty(€) = 1such thati = é¢+¢andé =1oré =3. on this topic would be interesting to investigate.
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Moreover, we have constructed a family of nonlinear 1- Lemma 18:Leta, b, c € C be three codewords such that the
error correcting codes and the decoding algorithm to corresttbcodega, by and (b, c¢) are different()s-codes (see Example
the error. This kind of constructed codes is additive and furthg). Then the subcodé: « b, ¢) cannot be &)s-code.

research on this topic can include new families of nonadditive
1-error correcting codes.

APPENDIX

We assume thdt”, II) is a translation-invariant propelinear
code.

Lemma 14:1f v € C then eitherr, = Id or m,(v) # v.
In the last case, for every € I such thatr,(e;) = ¢; # ¢
we have, if: € sup(v) thenj & sup(v) and if ¢ € sup(v)
then j € sup(v).

Proof: SinceC' is a translation-invariant code, i, #

1d, then there exist two coordinate vectefs# ¢; such that

but

wtg(v) = wtg(vxe; +¢;) = wtag(v + e + ¢)

according to Lemma 5. Hence, € sup(v)
J & sup(v).

Proposition 15: Vv € C, 72 = Id, andII has an Abelian
group structure.

if and only if g
]

Proof: The code(a,b) and the code(b,c} fulfil the

conditions

zt=0 2 =42 THY*T =19y

and, from this,y x z = > * x.
Now, if {a xb,c) were aQ)s-code then

(axb)*xcx(axb)=c

a* (¢ % b) * (a*b)

(cxa)*bx(axb)

(axb)*cx(axb)

c*(axb)*(axb)

cx(axb)? =cxc?=c#£e.

the lemma is proved.
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why(v) = d(z,v*xz) = whg(z + v+ m(x)).

This equality is true ifr, = Id Yv € C or, otherwise, there
existsz € F™ such thatr,(z) # = and, therefore, there exists [
a vector of weightl, ¢;, such thatr,(e;) # ¢;. 2]
In this case, letr,(¢;) = ¢; # ¢; and suppose,(¢;) = ex.
Obviously, e, # ¢; and, from Lemma 14i, k € sup(v) and 3]
J & sup(v) or i,k & sup(v) andj € sup(v). [4]
Supposee;, # ¢;. Then 5]
(6]

(7]
(8]

whi((ei +ej) + v (ei +¢5))
=wtg(e; +¢; +v+m,(e +e5))
=wtg(e; + e +v+e; +er) < wig(v)

which contradicts to Lemma 5. Sey, = ¢; and#2 = Id. All
the elements il are idempotents, sd has an Abelian group
structure. [
From this proposition we can assert that for everg C,
7w, = Id or =, is a product of coordinate transpositions. [10]
The next corollary is straightforward from the previous
proposition.
Corollary 16: Yv € C, v* = 0.
Proposition 17: If w,v € C andm,(e;) = e;, my(e;) = e
with j £ k, j # ¢ andk # ¢ then
1) mu(er) =mu(e;) =ewithl #4, 1 # j andl # k.
2) LetIl’ be the restriction ofl over the set of coordinates
{i, 4k, 1} Thenm, = (i, j)(k, 1), m, = (i, k)(5,1), and
T = Toxw = (615, K).
Proof: The first assertion is clear becaudes Abelian.
For the second assertion we have

El

(11]

(12]
(13]
[14]

(18]

[16]

OW,U:W,IUOW;:W/ :(Lvl)(Jvk)
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